
Proceedings of the
8th Student Computing Research Symposium

(SCORES’22)

Ljubljana, Slovenia
October 6, 2022

Uroš Čibej
Luka Fürst
Lovro Šubelj
Jure Žabkar

(Eds.)

https://www.scores.si

Proceedings of the
8th Student Computing Research Symposium

(SCORES’22)

Ljubljana, Slovenia
October 6, 2022

Uroš Čibej
Luka Fürst
Lovro Šubelj
Jure Žabkar

(Eds.)

Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici

v Ljubljani

COBISS.SI-ID=126673155

ISBN 978-961-7059-11-3 (Fakulteta za računalnǐstvo in informatiko, PDF)

Digitalna izdaja je prosto dostopna

This digital publication is freely available

http://zalozba.fri.uni-lj.si/SCORES2022.pdf

DOI: https://doi.org/10.51939/scores22

Založnik: Založba UL FRI, Ljubljana

Izdajatelj: UL Fakulteta za računalnǐstvo in informatiko, Ljubljana

Urednik: prof. dr. Franc Solina

Copyright © 2022 Založba UL FRI. All rights reserved.

http://COBISS.SI
https://plus.si.cobiss.net/opac7/bib/126673155?lang=SLV
http://zalozba.fri.uni-lj.si/SCORES2022.pdf
https://doi.org/10.51939/scores22

Title Proceedings of the 8th Student Computing Research Symposium
(SCORES’22)

Editors Uroš Čibej
(University of Ljubljana, Faculty of Computer and Information Science)

Luka Fürst
(University of Ljubljana, Faculty of Computer and Information Science)

Lovro Šubelj
(University of Ljubljana, Faculty of Computer and Information Science)

Jure Žabkar
(University of Ljubljana, Faculty of Computer and Information Science)

Conference 8th Student Computing Research Symposium (SCORES’22)

Venue University of Ljubljana
Faculty of Computer and Information Science
Večna pot 113, SI-1000 Ljubljana, Slovenia

Date October 6, 2022

Program Committee Klemen Berkovič (University of Maribor)
Zoran Bosnić (University of Ljubljana)
Janez Brest (University of Maribor)
Lucija Brezočnik (University of Maribor)
Andrej Brodnik (University of Ljubljana)
Patricio Bulić (University of Ljubljana)
Jani Dugonik (University of Maribor)
Iztok Fister (University of Maribor)
Mario Gorenjak (University of Maribor)
Vida Groznik (University of Ljubljana)
Branko Kavšek (University of Primorska)
Štefan Kohek (University of Maribor)
Matjaž Krnc (University of Primorska)
Niko Lukač (University of Maribor)
UrošMlakar (University of Maribor)
Jan Popič (University of Maribor)
Peter Rogelj (University of Primorska)
Aleksander Sadikov (University of Ljubljana)
Domen Šoberl (University of Primorska)
Damjan Vavpotič (University of Ljubljana)
Grega Vrbančič (University of Maribor)
Slavko Žitnik (University of Ljubljana)

Organizing Committee Uroš Čibej (University of Ljubljana)
Luka Fürst (University of Ljubljana)
Lovro Šubelj (University of Ljubljana)
Jure Žabkar (University of Ljubljana)

Published by University of Ljubljana
Faculty of Computer and Information Science
Večna pot 113, SI-1000 Ljubljana, Slovenia
https://www.fri.uni-lj.si/en, dekanat@fri.uni-lj.si

Co-published by University of Maribor
Faculty of Electrical Engineering and Computer Science
Koroška cesta 46, SI-2000 Maribor, Slovenia
https://feri.um.si/en/, feri@um.si

Co-published by University of Primorska
Faculty of Mathematics, Natural Sciences and Information Technologies
Glagoljaška ulica 8, SI-6000 Koper, Slovenia
https://www.famnit.upr.si/en, info@famnit.upr.si

Edition 1st
Publication type E-book

Published Ljubljana, Slovenia, October 2022

© University of Ljubljana, Faculty of Computer and Information Science

This book is published under a Creative Commons 4.0 International licence (CC BY 4.0). This license allows reusers to
distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator.
The license allows for commercial use.

Any third-party material in this book is published under the book’s Creative Commons licence unless indicated otherwise
in the credit line to the material. If you would like to reuse any third-party material not covered by the book’s Creative
Commons licence, you will need to obtain permission directly from the copyright holder.

https://creativecommons.org/licenses/by/4.0/

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

Editors’ Foreword
In computer science, there is certainly no lack of scien-

ti�c gatherings. Even in a comparatively small country such
as Slovenia, multiple conferences are held annually. How-
ever, a vast majority of those events are aimed at a general
scienti�c community, which predominantly consists of pro-
fessional researchers and PhD students. Students at the BsC
or MsC level seldom engage in potentially publishable re-
search, and even those who do rarely decide to put their
work in print, be it fear of rejection or unfamiliarity with
publication venues. However, if they were o�ered an oppor-
tunity to present their work at a conference that took into
account their relative lack of experience but nevertheless up-
held well-established criteria of acceptance (scienti�c nov-
elty, referencing prior work, quality of presentation, etc.),
they would be more likely to take up research during their
BsC and MsC years, to publish the results of their work,
and, ultimately, to pursue a scienti�c career. Furthermore,
a student-centered conference might entice the ‘uninitiated’
audience to follow the suit. Needless to say, bringing stu-
dentswith di�erent interests and from di�erent backgrounds
together would create a melting pot for all sorts of ideas, in-
cluding those that can be potentially developed into future
research papers.

Formerly known as StuCoSReC (Student Computer Sci-
ence Research Conference), SCORES is one of the few con-
ferences explicitly targeting the BsC and MsC student pop-
ulation. Even more, each paper must be authored by at least
one BsC or MsC student. Ever since its inception in 2014, the
conference has been jointly organized by the computer sci-
ence departments of the University of Ljubljana, the Univer-
sity of Maribor, and the University of Primorska, although it
is customary that every year one of them is selected as the
primary organizer. In the year 2022, this role was played by
the University of Ljubljana (Faculty of Computer and Infor-
mation Science).

At SCORES’22, we accepted 12 papers and arranged them
into three sessions of four papers each: Arti�cal Intelligence
and Machine Learning, Algorithmics and Theoretical Com-
puter Science, and Applications of Computer Science. Each

paper had been examined by at least two reviewers. The au-
thors come from a diverse set of academic and non-academic
institutions, namely University of Ljubljana, University of
Maribor, University of Primorska, Hongik University (Re-
public of Korea), Rhodes College (USA), University Medical
Center Ljubljana, and the Ministry of the Interior of the Re-
public of Slovenia. The Best Paper Award was given to Ben-
jamin Džubur, Žiga Trojer, and Urša Zrimšek, for their paper
Semantic analysis of Russo-Ukrainian war tweet networks. Ina
Bašić, Eric Gottlieb, and Matjaž Krnc, the authors of the pa-
per Some observations on the column-row game, received the
Best Presentation Award. Congratulations!

The papers that we received via the submission system,
the reviews prepared by the members of our Program Com-
mittee, and the presentations given at the conference itself
not only dispelled any concerns regarding quality but actu-
ally thoroughly exceeded our expectations. Having attended
many conferences in our local environment and abroad, we
dare say that quite a few of them were rivaled, if not sur-
passed, by what we saw at SCORES’22. Nevertheless, we are
certain that there is still room for improvement, and we have
no doubts that SCORES’23 will push the envelope even fur-
ther.

We are immensely grateful to our reviewers, the mem-
bers of the Program Committee; to David Nabergoj and Vit-
jan Zavrtanik, our PhD students who gave engaging talks
on two cutting-edge research topics; to Prof. Franc Solina,
who took care of everything thatwas necessary to have these
proceedings published; to the people from Communication
O�ce and Computer Center at our Faculty, who were ex-
tremely helpful throughout the process; to Iztok Fister from
the University of Maribor, who told us all we had to know
to get things started; and, last but not least, to Dewesoft and
Wisdom Labs, Slovenian companies that generously funded
not only the prizes awarded at SCORES’22 but . . . quite pos-
sibly those to be given at SCORES’23 and SCORES’24, too.

We sincerely apologize to all those whom we forgot to
mention. It was certainly not done on purpose.

Uroš Čibej
Luka Fürst
Lovro Šubelj
Jure Žabkar

v

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

vi

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

Conference Program

Arti�cial Intelligence, Machine Learning, and Pattern Recognition 1
1 Use of network features to improve 3D object classi�cation

Gal Petkovšek, Janez Božič, and Marija Marolt
5 E�cient machine learning based graph layout calculation for investigation platform

Alen Granda, Niko Lukač, Aleksander Pur, and Štefan Kohek
9 Music genre classi�cation based on spectrograms of the sound recording using an ensemble of CNNs

Tadej Lahovnik and Vili Podgorelec
13 Super-resolution method for reconstructing street images from surveillance system based on Real-ESRGAN

Quoc Toan Nguyen

Algorithmics and Theoretical Computer Science 17
17 An analysis of time complexity and a discussion on interpretability for two methods of constructing social

network graphs
Žan Jonke

21 Empirical evaluation of sequential, parallel and distributed implementations of k-means clustering
Andrej Perković and Aleksandar Tošić

25 Exact exponential algorithms for the center closing problem
Samo Metličar and Jurij Mihelič

29 Some observations on the column-row game
Ina Bašić, Eric Gottlieb, and Matjaž Krnc

Applications of Computer Science 33
33 Semantic analysis of Russo-Ukrainian war tweet networks

Benjamin Džubur, Žiga Trojer, Urša Zrimšek
37 Performance evaluation of the SloBERTa and XML-RoBERTa transformer models on the Slovenian news corpus

SentiNews 1.0
Martin Domajnko and Jakob Kordež

41 Spletna aplikacija za analizo tapkanja s prsti
Filip Zupančič, Gal Žagar, Dejan Georgiev, and Jure Žabkar

45 Iterated prisoner’s dilemma and survival of the �ttest from an ecological perspective
Martin Domajnko

Index of Authors 49

vii

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

viii

Use of network features to improve 3D object classification
Gal Petkovšek

gp19194@student.uni-lj.si
Faculty of computer science,

University of Ljubljana Večna pot 113
SI-1000 Ljubljana, Slovenia

Janez Božič
jb1236@student.uni-lj.si

Faculty of computer science,
University of Ljubljana Večna pot 113

SI-1000 Ljubljana, Slovenia

Marija Marolt
mm7522@student.uni-lj.si
Faculty of computer science,

University of Ljubljana Večna pot 113
SI-1000 Ljubljana, Slovenia

ABSTRACT
In our work we tackle a problem of 3D object classi�cation, which
is a task traditionally closer to computer graphics rather than net-
work analysis. There are several di�erent approaches for solving
this problem including deep learning, topological data analysis,
graph theory etc.We use the Mapper algorithm that transforms the
point cloud into a graph, which simpli�es the data while obtaining
the key properties of the structure. This algorithm is already used
to solve such a task however, the features extracted from the graph
were very limited. The novelty that we introduce is the calculation
of some network properties on such graphs which are used for
classi�cation. The results show that the models have better classi-
�cation accuracy scores when using network analysis attributes
in addition to attributes from topological analysis however, it is
challenging to determine exactly which features will perform well
for a classi�cation of objects.

KEYWORDS
network analysis, 3D object classi�cation, Mapper algorithm, fea-
ture selection

1 INTRODUCTION
3D object recognition is one of the most challenging �elds in object
recognition community. The goal of the task is for a model to
di�erentiate between di�erent 3D objects that are presented to it
in a certain format.

In 3D computer graphics a polygon mesh is a collection of ver-
tices, edges and faces that de�nes a polyhedral object [1] (however
in this work we consider only vertices positioned in a 3D space -
from now on this will be referred to as point cloud). Because the
process of scanning objects and saving them in such format has
become very common, a need has developed to be able to automat-
ically classify and visualise such data. An example can be seen on
Figure 1. Given points together can human easily discern silhou-
ette as a chair. It takes a computer quite some time to process all
the points and connect them intuitively, so we need to extract the
necessary data from the point cloud, train a model, and then make
a prediction.

The �rst and one of the most fundamental challenges of this
task is choosing the best representation of such data to be inputted
into the models for classi�cation. One approach is to transform the
data into a set of 2D images and feed them into the model [11] and
another would be to just use the whole set of points [8]. In this work
we used a Mapper algorithm [10] to transform the set of points
into a compact network. An example of such transformation can be
seen on Figure 1, where we can on the left side observe the original
point cloud and the extracted network on the right. The idea is to

Figure 1: Chair point cloud and its network made with Map-
per algorithm

represent the object in the simplest way possible, while still keeping
the essential information required for the classi�cation. From this
relatively simple representation of an object we can compute some
topological properties of the structure or some properties from
network analysis that would be useful for classi�cation. The options
for attributes are quite extensive and in this work we limit ourselves
to three topology features and 14 network analysis features.We then
test di�erent subsets of features to determine which combination
is most e�ective for classi�cation.

There are a lot of di�erent approaches of either describing the
data or doing the actual classi�cation of 3D objects. A paper from
2016 [8] describes an approach that takes all the data points and
feeds them to a neural network. Another approach [11] consider the
data as a set of 2D images. Another research [4] uses a technique
called topology matching on graphs. Some authors [3, 6, 11, 13]
also describe the use of Convolutional Neural Networks (CNNs) for
solving such problems. Instead of CNN we will be using Support
vector machine (SVM), as in the article [5] Anupama et. al. The
Mapper algorithm that we are using to transform the data was �rst
described in the article by Singh et. al [10] however, for classi�cation
they limited themselves to the outputs of the Mapper algorithm
while we explore the network further.

2 METHODS
2.1 Problem de�nition
We have tested our approach on a dataset that consists of four
classes (table, chairs, octopuses and spiders). We tackle this problem
as a binary classi�cation (deducing whether a sample is e.g. a table
or not). More precisely we compare four di�erent classi�cation
tasks (one binary classi�er for every one of the four classes) in
order to determine how the use of network analysis features a�ect
the performance of models on di�erent target classes.

For every one of the four models we test every possible subset
of features that are described in Section 2.4.

New models (with network theory features) are compared to
models with one homology feature.

h�ps://doi.org/10.51939/scores22.01

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

1

Gal Petkovšek, Janez Božič, and Marija Marolt

2.2 Data
The data is obtained from McGill 3D Shape Benchmark. [14] It is a
repository of point clouds for testing 3D shape retrieval algorithms.
We use the mesh format where each object’s surface is provided in
triangulated form. To provide versatility but also enough models in
every class, one class is containing goal object models and second
class containing three other objects models. There are point clouds
of 21 tables, 23 chairs, 25 spiders and 31 octopuses taken from
McGill 3D Shape Benchmark repository (together 100 samples).
Examples of the referred samples can be seen on Figure 2.

Figure 2: Examples of four types of objects in the database

2.3 Network construction
To create a network from data point cloud we use the Mapper
algorithm. It is composed of three main steps: the �ltering function,
the cover function and the clustering function [12]. After some
initial testing we chose the best working components. Example of
the transformation is shown on �gure 1.

The main purpose of the �ltering function is to reduce the di-
mensionality of the data. In our case this function projects data
points de�ned in a 3D space onto the xy plane.

The next step is to calculate groups of overlapping points with
the help of the covering function. This function takes as input
the �ltered space, calculates overlapping groups with dividing and
transform points from each group back to the original space. Over-
lapped groups are computed with division of each input dimension
by 3 equal-length intervals with fractional overlap of 0.15.

Finally, we apply a clustering algorithm on each group and calcu-
late an undirected graph. This is done with a clustering algorithm
that is able to determine the number of clusters in a dataset auto-
matically or by manually de�ning it. For this purpose we use the
DBSCAN [7] algorithm where the maximum distance between two
points for one to be considered as in the neighborhood of the other
is 10 using Chebyshev distance. Each cluster generates a node and
the edges between them are created if the two clusters share some
points.

The resulting network contains a lot less nodes than there are
points in the point cloud and is therefore more easily handled than
the original data representation. An example of such network can
be seen in Figure 1.

2.4 Attribute calculation
A novel practice in point cloud object recognition is applying dif-
ferent homology based attributes to the output of the mapper. A
“continuous” shape is built on the top of the data in order to high-
light the underlying topology or geometry. By using homology, we
observe numbers of components, holes, and voids while adding

connections between the points. We measure when connected com-
ponents appear and when they merge, representing their lifetime.
In our case we use persistence entropy (entropy of the points in
a persistence diagram later referred to as h1), and amplitudes of
persistent diagrams, which plot lifetimes of connected components,
computed with Wasserstein or Bottleneck distance as a classi�-
cation parameters (later referred to as h2 and h3). From network
theory we included the following features:

(0) Number of articulation points (NA) - nodes that sepa-
rate the notwork into multiple sub-networks.

(1) Average degree of node in a network (h:i)
(2) Network density (d)
(3) Average clustering coe�cient (h⇠i)
(4) Normalised number of nodes in top 10% closeness

centrality (number of nodes having 90% or more of
maximumnode closeness centrality divided by number
of nodes) (C>?10_l�1)

(5) Normalised number of nodes in top 10% betweenness
centrality (number of nodes having 90% or more of
maximum node betweeness centrality divided by num-
ber of nodes) (C>?10_f)

(6) Normalised number of cliques with 4 nodes (number
of cliques containing 4 nodes divided by number of
nodes) (NClique)

(7) Degree assortativity coe�cient (DAC)
(8) Normalised number of leaves (number of nodes with

degree 1 divided by number of nodes) (Nl)
(9) Maximum node closeness centrality ("0G l�1)
(10) Maximum node betweenness centrality ("0Gf)
(11) Average node closeness centrality (�E6l�1)
(12) Average node betweenness centrality (�E6f)
(13) Number of Louvain Communities (NLC)

Attributes such as number of articulation points, number of
leafs or number of louvain communities tell us a lot about the ar-
ticulation parts of the structure which could be a very valuable
information for the model. Average degree of a node and network
density provide information on how many edges formed in the net-
work which in other words is how many of clusters obtained from
the mapper algorithm described in Section 2.3 share some points.
Features including node centralities contain information about the
importance of speci�c nodes (either on average, maximum or just
what proportion of nodes achieves the higher centralities). The idea
behind number of cliques and average clustering coe�cient is that
they could indicate if an object would contain some larger even
surface that would be more fully connected.

Our goal is to determine the best combination of features, how-
ever since we only have a very limited number of samples, we
do not consider too large subsets of features (on which the model
would only over�t and produce meaningless results). Therefore we
restrict the number of features to either 4 (if we also include some
homology) or 6 otherwise.

We extractmost of themeasures fromPython libraryNetworkX [9],
and calculate the remaining with custom code using data from the

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

2

Use of network features to improve 3D object classification

library. Speci�cally average network clustering, number of articu-
lation points, assortativity coe�cient, number of louvain commu-
nities, betweenes and closeness centralities were calculated with
NetworkX functions.

2.5 Learning
For modeling we use Support Vector Machines (SVM) implementa-
tion from SciKit Learn [2] library for Python with a linear kernel
setting. Other hyperparameters of the model are set to their default
values as speci�ed in the SciKit Learn [2] documentation.

We evaluate our models with 10-fold cross validation to improve
stability of the results.

For a metric we use AUC (area under the ROC curve) which is a
metric ranging from 0 to 1 (in practice from 0.5 to 1 as any classi�er
scoring lower than 0.5 can be inverted, transitioning to AUC>0.5)
with 1 being the most and 0 (in reality 0.5) being the best score. This
metric was chosen since it shows how well the model can separate
the samples into correct classes. It is calculated by �rst constructing
the ROC curve, which shows the relation between true positive
rate (TPR) and false positive rate (FPR). It is obtained by moving
the threshold and for each value calculating the TPR and FPR. After
all points are gathered, the AUC can be calculated.

2.6 Experimetal setup
Experiments are conducted on the data set of labeled point clouds,
described in Section 2.2. As we have 4 di�erent labels we conduct 4
independent experimets, each time choosing one label as positive
(object belongs to that group) and the other labels as negative (object
does not belong to the chosen group).

For each of those 4 experimets we �rst transform all the cloud
points to smaller networks using the mapper algorithm. For each
one of those we then extract the features (both topological and
features form network analysis). Once we have the labeled feature
vectors we perform a grid search over all feature subsets (that
su�ces the size limitations presented in Section 2.4). For each of
these subsets we performe a 10-fold cross validation with the SVM
model (each fold using 90 samples for training and 10 for testing).
The results are then saved and analysed.

3 RESULTS
The goal of our research is to determine if the additional network
features contribute to the scores and if so which features are the
most bene�cial to include.

To determine whether adding additional features is even bene�-
cial for the predictions, we �rst take a look at the results of the best
models (models built on subsets of features that performed best ac-
cording to the AUC score). Combinations of attributes that achieve
the highest score in our test cases are displayed below. In addition
to the best performing subset of features and the corresponding
scores we included the results for best performing homology for
each use case (same results as can be seen in Table 1).

• Tables: The best features are"0G l�1,�E6l�1 and h3. AUC
score is 0.96 (AUC using only h3 was 0.84).

• Chairs The best features are NA, h⇠i and NLC in combi-
nation with either C>?10_l�1 and"0Gf or h2. AUC score
is 0.96 (AUC using only h1 was 0.9).

tables chairs octopus spiders Average
h1 0.62 0.91 0.66 0.71 0.73
h2 0.48 0.80 0.48 0.77 0.63
h3 0.84 0.60 0.62 0.81 0.72
NA 0.50 0.48 0.50 0.48 0.49
h:i 0.86 0.43 0.45 0.79 0.63
d 0.43 0.37 0.56 0.41 0.44
h⇠i 0.24 0.36 0.27 0.33 0.30
C>?10_l�1 0.59 0.44 0.56 0.30 0.47
C>?10_f 0.74 0.77 0.71 0.37 0.65
NClique 0.35 0.42 0.46 0.79 0.51
DAC 0.90 0.44 0.46 0.39 0.55
Nl 0.62 0.35 0.48 0.49 0.49
"0G l�1 0.92 0.43 0.37 0.67 0.60
"0Gf 0.43 0.58 0.57 0.50 0.52
�E6l�1 0.92 0.40 0.56 0.50 0.60
�E6f 0.82 0.42 0.69 0.60 0.63
NLC 0.47 0.49 0.52 0.50 0.50

Table 1: The results of the model for each individual feature
(only 1 feature used for classi�cation).

• Octopuses The best features are NA, DAC and h3. AUC
score is 0.85 (AUC using only h1 was 0.66).

• Spiders The best features are C>?10_f , Nl,"0G l�1 and h2.
AUC score is 0.89 (AUC using only h3 was 0.81).

The best performing features are greatly dependent on the do-
main (speci�c object we want to classify), which is also seen in
Table 1. From our results of combination of best performing features
we can see improvements over the baseline (using only homology
for classi�cation). Addition of network analysis attributes to the
feature vector improves classi�cation. However, based on the re-
sults above we cannot determine which features in general perform
best.

To determine this we �rst viewed the scores of models using
only single features to predict the class. Each column (classi�cation
problem) has the three best results bolded. As we can see, we could
not point out a few features that would be signi�cantly better
than the others in all cases. The quality of each attribute is greatly
dependant on the class that we are trying to predict. This can
easily be explained as di�erent objects tend to produce di�erent
networks and each has di�erent properties that separate it from
the rest. Some of the best performing features are C>?10_f ,"0Gf
and "0G l�1 however, while most of them perform quite well on
two classes they perform worse on the other two. More consistent
features that perform relatively well on most classes are for example
C>?10_f and �E6f .

To further test the importance of features we set a cuto� point at
the score of the model using the best performing homology feature
(for each classi�cation task) and only consider models with feature
subsets that scored higher. For each feature we calculate in what
percent of those models it appears. Those results are presented in
Figure 3. We can observe again that the results mostly di�er when
it comes to the observed class. More preferable are features that
perform well on all or most of the use cases. Such example would

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

3

Gal Petkovšek, Janez Božič, and Marija Marolt

Figure 3: Chair point cloud and its network made with map-
per algorithm

be h⇠i, Nl, �E6l�1 or �E6f . The latter two are by themselves a rela-
tively good features. h⇠i is not as successful on its own but is often
present in the most successful subsets. It indicates how connected
a network is therefore an objects with a more homogeneous body
might be more connected than the ones with more articulation
parts. The number of louvain communities could also be a good
measure to determine out of how many parts the object consists
since it also appears in many of the best subsets for all use cases.

NA is one of extreme examples that perform very well on two
classes but quite worse on the others. Number of articulation points
is greatly dependant on how many nodes there are in general and
while in some cases it might be a very good indicator of how many
articulation parts there are in others it might be deceiving as for
example a long leg of a spider might have multiple articulation
points. Such features (DAC is another such example) might also be
taken into consideration when building a model however it is not
guaranteed that they will perform well on all use cases.

4 CONCLUSION
Our experiments have shown that it is bene�cial for a model for
3D object classi�cation to use (in addition to topology features)
network analysis features. However, it is di�cult to determine
which will perform best for a certain use case. We have tested our
models on four di�erent classi�cation problems and the results
have shown that while some attributes are indeed in general better
than the others, for the majority of objects it is hard to determine
which combination will perform best.

In future work we could expand our research by including a
larger dataset (include more objects). We would also like to test
more network features, and get an even better insight into what
are the most bene�cial attributes.

REFERENCES
[1] 2022. Polygon Mesh. https://en.wikipedia.org/wiki/Polygon_mesh
[2] David Cournapeau. 2022. SciKit Learn: Machine learning in Python.
[3] Kan Guo, Dongqing Zou, and Xiaowu Chen. 2016. 3D Mesh Labeling via Deep

Convolutional Neural Networks. ACM Trans. Graph. 35, 1, Article 3 (dec 2016),

12 pages. https://doi.org/10.1145/2835487
[4] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L. Kunii. 2001.

Topology Matching for Fully Automatic Similarity Estimation of 3D Shapes. In
Proceedings of the 28th Annual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH ’01). Association for Computing Machinery, New York,
NY, USA, 203–212. https://doi.org/10.1145/383259.383282

[5] Anupama Jawale and Ganesh Magar. 2019. Comparison of Image Classi�cation
Techniques : Binary and Multiclass using Convolutional Neural Network and
Support Vector Machines. (12 2019).

[6] Alex Krizhevsky, Ilya Sutskever, and Geo�rey E Hinton. 2012. ImageNet Clas-
si�cation with Deep Convolutional Neural Networks. In Advances in Neural
Information Processing Systems, F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (Eds.), Vol. 25. Curran Associates, Inc. https://proceedings.neurips.cc/
paper/2012/�le/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

[7] Jiirg Sander Martin Ester, Hans-Peter Kriegel and Xiaowei Xu. 1996. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise.

[8] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas. 2016.
PointNet: Deep Learning on Point Sets for 3D Classi�cation and Segmentation.
CoRR abs/1612.00593 (2016). arXiv:1612.00593 http://arxiv.org/abs/1612.00593

[9] Aric Hagberg Pieter Swart Dan Schult. 2022. NetworkX: Network analysis
library.

[10] Gurjeet Singh, Facundo Memoli, and Gunnar Carlsson. 2007. Topological Meth-
ods for the Analysis of High Dimensional Data Sets and 3D Object Recogni-
tion. In Eurographics Symposium on Point-Based Graphics, M. Botsch, R. Pa-
jarola, B. Chen, and M. Zwicker (Eds.). The Eurographics Association. https:
//doi.org/10.2312/SPBG/SPBG07/091-100

[11] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller.
2015. Multi-view Convolutional Neural Networks for 3D Shape Recognition.
CoRR abs/1505.00880 (2015). arXiv:1505.00880 http://arxiv.org/abs/1505.00880

[12] Guillaume Tauzin, Umberto Lupo, Lewis Tunstall, Julian Burella Pérez, Matteo
Caorsi, Wojciech Reise, Anibal Medina-Mardones, Alberto Dassatti, and Kathryn
Hess. 2021. giotto-tda: A Topological Data Analysis Toolkit for Machine Learning
and Data Exploration. arXiv:2004.02551 [cs.LG]

[13] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and
Justin M Solomon. 2019. Dynamic graph cnn for learning on point clouds. Acm
Transactions On Graphics (tog) 38, 5 (2019), 1–12.

[14] Juan Zhang, Kaleem Siddiqi, Diego Macrini, Ali Shokoufandeh, and Sven Dickin-
son. 2005. Retrieving Articulated 3-D Models Using Medial Surfaces and Their
Graph Spectra. 285–300. https://doi.org/10.1007/11585978_19

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

4

E�icient machine learning based graph layout calculation for
investigation platform

Alen Granda
alen.granda@student.um.si

Faculty of Electrical
Engineering and Computer Science,

University of Maribor
Koroška cesta 46

SI-2000 Maribor, Slovenia

Niko Lukač
niko.lukac@um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

Aleksander Pur
aleksander.pur@policija.si
Ministry of the Interior

Štefanova ulica 2
SI-1000 Ljubljana, Slovenia

Štefan Kohek
stefan.kohek@um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

Abstract
Modern web technologies enable interactive visualization of graphs
in a web browser. However, larger graphs, which are common in
investigation data, bring numerous technical limitations in terms
of transfer bandwidth and application responsiveness. In this paper
we propose a machine learning based method to e�ciently transfer
graphs’ data between the client and the server. Graphs are stored
in the investigation platform database on the server and are trans-
ferred to web browser on the client for interactive visualization
and manipulation. For this reason, we utilize a concept called graph
embedding. The main aim is to o�er responsive web application
due to less complex layout calculation algorithm on the client, less
bandwidth requirements and incremental visualization of nodes
during graph transfer. We performed distinct experiments, which
demonstrate faster graph visualization on the client. We perceived
up to 130 times faster layout calculation on the client compared to
standard force graph algorithms with maximum 1000 nodes, while
preserving adequate visualization accuracy.

Keywords
machine learning, graph embedding, graph visualization, investiga-
tion platform, web application

1 Introduction
Data representation using graphs is nowadays widely adopted stan-
dard at any form of applications [4]. Graphs provide natural and
intuitive method of presenting enormous amounts of research data
(e.g. bank transactions between entities, relations on social me-
dia), which daily increase in size. In this paper, the main focus is
on modern web applications enriched with graphs, which are the
basis of research platforms. Example of such application is an ad-
vanced investigation platform [13], which facilitates investigations
by visualizing nodes with their relations using graphs. We extend
the platform by utilizing suggested approach to facilitate several
drawbacks, which are discussed in succeeding paragraph.

For graph visualization, most common approach in web appli-
cations is D3.js library [2], which uses Dwyer’s proposition of
incremental graph layout calculation. It computes incremental lay-
out with complexity of $ (|+ |log|+ | + |⇢ |) per iteration where V
is a set of vertices and E a set of edges [3]. This algorithm is com-
putationally demanding, which is noticeable especially at the side
of low-power clients (e.g. mobile phones). Therefore, web applica-
tion may su�er from unresponsiveness. Another di�culty is also
lower bandwidth in comparison to local desktop applications. To
construct a layout, algorithm expects complete graph data to be
available, which prevents incremental visualization of graphs and
therefore responsiveness of the web application. By application of
our proposition, aforementioned problems can be alleviated due to
simultaneous data transfer and graph construction.

This problem has been extensively studied in the literature in
terms of time and space complexity. Gove [6] recently presented ran-
dom vertex sampling algorithm running at$ (|+ |) time and$ (|+ | 34)
auxilliary space. With combination of parallelization, speedup ratio
of 26.7% may be achieved [17]. In addition, by using specialized
method for graph representation termed Log (graph) [1], high com-
pression ratios with minimal cost decompression can be realized.

In this paper we propose machine learning-based graph lay-
out calculation for web applications. Given nodes and edges, the
server application trains neural network based on expected node
coordinates calculated in advance. For the visualization in the web
application on the client, only the weights of the neural network,
graph nodes and graph edges are transferred from the server. The
client is provided with the same neural network as the server. After
having received the weights, the client is capable of incrementally
constructing the layout by simultaneously receiving and predicting
received node’s coordinates, resulting in improved responsiveness
compared to the standard layout calculation algorithms, which
require complete graphs to be available in advance.

h�ps://doi.org/10.51939/scores22.02

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

5

Alen Granda, Niko Lukač, Aleksander Pur, and Štefan Kohek

The experiments were performed on an advanced investigation
platform data [13]. Results were compared to baseline visualiza-
tion algorithms and assessed using graphs of accuracy and time
complexity. We indicated lower bandwidth requirements with ac-
ceptable accuracy. In addition, faster graph construction on the
client-side was demonstrated.

Below, the main contributions of the paper are outlined.
• E�cient procedure of conveying graph data from the server

to the client is provided.
• Graph visualization work�ow is designed, which breaks

dependency between the nodes for the layout calculation
and therefore enables incremental visualization of graphs.

• A methodology is delivered, which increases responsive-
ness of web applications on the client when visualizing
enormous amounts of nodes and connections because of
reduced visualizaton algorithm complexity.

• An approach of node coordinate prediction based on the
node embedding method called random walk is introduced.

2 Layout construction
Proposed algorithm takes advantage of machine learning (ML) to
predict node coordinates in the graph. However, graphs are known
to hardly incorporate with ML algorithms due to their diversity
[10]. As a consequence, they have to be transformed to an input
whose neural network is familiar with. For this reason, a tech-
nique called graph embedding [7] is utilized. Graph embedding is a
transformation of graphs, which preserves as much graph property
information as possible. The main motivation of proposed algo-
rithm is to suggest a concept of establishing a machine learning
model for layout calculation of nodes on the server and transfer-
ring it to the client for execution while preserving original graph
appearance.

Figure 1 depicts the proposed methodology. The powerful server
is responsible for graph feature learning, while the client manages
graph visualization. Below, each segment is described in detail.

Figure 1: Proposed methodology work�ow scheme.

2.1 Building machine learning model
ML model construction happens on the server-side of web appli-
cation. The server is responsible to predict node coordinates and
to teach the neural network. Figure 2 indicates suggested con�g-
uration of neural network based on the multilayer perceptron ar-
chitecture (MLP) [14] with 2 dense hidden layers, each including @
neurons. The output layer consists of 2 neurons, each representing

coordinate in the �nal graph visualization. Nodes in the hidden
layer are provided with the hyperbolic tangent activation func-
tion, whereas the output layer possesses simple linear activation
function.

As an input data, MLP accepts =-dimensional array of node em-
bedding, where = denotes the size of an embedding. The main aim
of a node embedding is to transform a node into a vector space
while preserving its properties [16]. Consequently, it retains node
relatedness, resulting in clustering coupled nodes, while distancing
unrelated nodes. Let 28 denote the 8-th node in the graph. To con-
struct its embedding, randomwalk-based node embedding node2vec
[8] has been chosen. Random walk is a procedure of joining similar
nodes in the complex graph to an embedding. As an input it accepts
the starting node and produces a vector of speci�ed length. Each
element in the vector represents a characteristic of the visited node.
With the help of extra parameters, which guide the walk, node2vec
switches between breadth-�rst search (BFS) and depth-�rst search
(DFS) to simulate the random walk. Correspondingly, it traverses
local clusters as well as distant ones.

Before training the MLP, expected coordinates are computed
for every node using an implementation of Fruchterman-Reingold
force-directed algorithm [5] fromNetworkX Python library [9]. As a
learning algorithm backpropagation [11] in combinationwithAdam
optimizer [12] is consumed. After having optimized the weights,
the server sends them back to the client accompanied by the graph
nodes and the edges. The client is subsequently responsible for
graph layout calculation based on the received machine learning
model and graph data.

Figure 2: Proposed neural network scheme.

2.2 Graph visualization
The client is provided with the neural network from the server.
As a consequence, it generates almost identical graph layout after
acquiring the MLP weights. For this reason, the only task left for
the client is to generate the random walks for an individual re-
ceived node and predict its coordinates. After this stage, the client
is prepared to visualize the graph.

3 Results and discussion
The aim of the experiments was to demonstrate improvements
in speed compared to the standard visualization algorithms (e.g.
Fruchterman-Reingold force-directed algorithm [5]) while main-
taining the accuracy of graph visualization. Furthermore, the impact
of neural network parameters was inspected by altering the number

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

6

E�icient machine learning based graph layout calculation for investigation platform

of neurons @ in the hidden layers and by modifying the number
of random walks A per individual node. Having small number of
random walks might result in many di�erent graph layouts as the
random walks are arbitrarily generated.

Experiments were examined on hardware with following spec-
i�cations: CPU: Intel Core i7-8700, RAM: 16 GB, GPU: GeForce
GTX 1070. In addition, Python programming language was selected
with TensorFlow [15] library of version 2.4.0 for neural network
construction and NetworkX [9] library of version 2.5 to execute
force-directed algorithm.

Input data was acquired from an advanced investigation plat-
form [13]. Graphs are directed, containing from 10 to 1000 nodes.
Figure 3 depicts an example of a graph with 12 related nodes. Before
learning the model, the training set was prepared using output co-
ordinates of Fruchterman-Reingold force-directed algorithm. As a
consequence, ground truth for results is the latter algorithm, which
was executed using NetworkX library. The root mean squared er-
ror (RMSE) metric were applied to analyze the correctness of the
predicted node coordinates. RMSE indicates how distant are node
coordinates between the suggested algorithm and node coordinates
from the training set. Individual node coordinate was presented as
�oating-point numbers ranging between -10 and 10 units. Training
period was limited to 100 epochs and learning rate was set to 0.001.

Three experiments were performed. The aim of the �rst was to
assess an accuracy of proposed algorithm against the number of
neurons @ in the hidden layers of the MLP neural network. The
number of random walks A for every node was arranged to 50, each
having the length = = 10. Hence, the size of the input layer was
�xed to 10. Such con�guration has appeared as a good compromise
between e�ciency and time consumption when running experi-
ments. Beginning with 10 neurons in each hidden layer, number of
neurons was increased by 10 until 200. MLP learned the weights and
RMSE was calculated in every iteration. Procedure was repeated 10
times for graphs with 10, 50, 100 and 1000 nodes. Figure 4 indicates
average RMSE of all recurrences. Improvement of accuracy might
be observed as the number of neurons increased, regardless of the
initial graph size. However, starting with 100 neurons per hidden
layer neural network exhibited no signi�cant enhancement.

Figure 3: Example layout construction of proposed method
against Fruchterman-Reingold algorithm.

The focus of the second experiment was to evaluate precision
of proposed algorithm against the number of random walks A per
node. Strategy was related to the initial experiment. The number

of random walks was manipulated with presupposition of having
@ = 100 neurons in each hidden layer of MLP and the length of each
random walk = to be 50. Firstly, MLP was trained with 5 random
walks per node and RMSE was calculated. Afterwards, 5 random
walks were added and procedure was repeated. Iteration stopped
when the number of random walks reached 100. Presented process
was rerun 10 times for graphs having 10, 50, 100 and 1000 nodes.
Figure 5 manifests average RMSE. It is noticeable how accuracy
increased as more random walks were included for each node.
Correspondingly to Figure 4, exactness started converging to some
value as the number of random walks exceeded 60.

Figure 4: Graphs of accuracy against number of neurons in
hidden layer of MLP.

Figure 5: Graphs of accuracy against number of walks per
node.

Finally, runtimes were examined. We experimented time con-
sumption for node coordinate prediction with given neural network
on the client for graphs of distinct size and discovered nearly linear
increment with the number of nodes. Compared to an implemen-
tation of Fruchterman-Reingold algorithm in NetworkX library,
Figure 6 indicates remarkable time-consumption reduction. In com-
bination with the parallel layout construction while receiving the
graph data, a considerable potential for minimizing time necessary
to compute coordinates is perceived. Standard force-directed algo-
rithms namely construct node coordinates with a time complexity
of $ (n2) per individual iteration of the simulation, which might

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

7

Alen Granda, Niko Lukač, Aleksander Pur, and Štefan Kohek

be time-consuming, especially for graphs extending 400 nodes as
shown in Figure 6. Considering that the execution of algorithms oc-
curs on devices with lower hardware speci�cations, the di�erences
in time consumption should escalate.

Figure 6: Time consumption for node coordinate calculation.

As mentioned, the purpose of the presented methodology was
also to decrease bandwidth requirements. Let us presume our propo-
sition of MLP architecture with @ = 100 neurons in each hidden
layer and an input layer of size = = 10. Hence, neural network
consists of 11200 weights. On condition that each weight is pre-
sented as 32-bit �oating point, the amount of data required to be
transferred between the server and the client is 44800 bytes, which
is considerably compact regarding today’s technology. After the
weights are sent, the client is able to gradually construct the layout
while receiving the nodes and the edges.

A perspective to expose is the resistance of the proposed algo-
rithm to the number of edges in the graph. Being the graph fully
connected or not, the algorithm requires to generate A random
walks of length = for every node. Random walk construction of a
node without connections would result in a vector containing the
node itself =-times.

4 Conclusion
Amethod for graph visualization in modern web applications using
MLP neural network has been presented. Based on the experiments,
time consumption of proposed procedure is promising compared
to the Fruchterman-Reingold algorithm. In addition, visualization
accuracy has been preserved. For this reason, the experiments have
manifested that the purpose of proposed algorithm is ful�lled.

One of the concerns might be managing multiple big data re-
quests from clients. However, as modern server infrastructures are
getting more powerful each day, we believe our concept has practi-
cal value. Instead of executing complex calculations on the client
and transferring huge amounts of data between the server and the
client, we conceive our method as a replacement to aforementioned
techniques. In addition, proposed methodology is able to construct
layout incrementally at the time of receiving the nodes from the
server, resulting in improved user experience. The only limitation
is the requirement for transferring edges in an appropriate order
for a random walk on the client. The problem can be alleviated by
limiting the length of the walk. Moreover, the server could take
advantage of caching to avoid neural network learning process
duplication.

In this paper, the main focus was on node coordinate predic-
tion. Nonetheless, our contribution might be reproduced to predict
other graph parameters (e.g. graph coloring). In addition, presented

methodology could be improved by selecting other neural network
architectures. Having inspected the experiments, we have perceived
how RMSE increased with graph size. Nevertheless, results have
improved as the complexity of MLP increased. For this reason, we
propose future research to focus on selecting a more complex neural
network for given task. Aditionally, we suggest:

• Testing an impact of node2vec random walk parameters on
accuracy,

• Sensitivity of the results to the length of node embeddings,
• Testing other graph embedding techniques,
• An evaluation of server performance when receiving mul-

tiple requests from clients and an evaluation of distributed
computation.

Acknowledgments
The authors acknowledge joint �nancial support from the Slovenian
Research Agency and Slovenian Ministry of the Interior (target
research programme No. V2-2117).

References
[1] Maciej Besta, Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh, Maurice Hoerold,

and Torsten Hoe�er. 2018. Log (graph) a near-optimal high-performance graph
representation. In Proceedings of the 27th international conference on parallel
architectures and compilation techniques. 1–13.

[2] Michael Bostock, Vadim Ogievetsky, and Je�rey Heer. 2011. D3 data-driven
documents. IEEE transactions on visualization and computer graphics 17, 12
(2011), 2301–2309.

[3] Tim Dwyer. 2009. Scalable, versatile and simple constrained graph layout. In
Computer graphics forum, Vol. 28. Wiley Online Library, 991–998.

[4] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An evolving query language for property graphs.
In Proceedings of the 2018 International Conference on Management of Data. 1433–
1445.

[5] Thomas M. J. Fruchterman and Edward M. Reingold. 1991. Graph drawing
by force-directed placement. Software: Practice and experience 21, 11 (1991),
1129–1164.

[6] Robert Gove. 2019. A Random Sampling O (n) Force-calculation Algorithm
for Graph Layouts. In Computer Graphics Forum, Vol. 38. Wiley Online Library,
739–751.

[7] Palash Goyal and Emilio Ferrara. 2018. Graph embedding techniques, applica-
tions, and performance: A survey. Knowledge-Based Systems 151 (2018), 78–94.

[8] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 855–864.

[9] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network
Structure, Dynamics, and Function using NetworkX. In Proceedings of the 7th
Python in Science Conference, Gaël Varoquaux, Travis Vaught, and Jarrod Millman
(Eds.). Pasadena, CA USA, 11 – 15.

[10] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning
on Graphs: Methods and Applications. IEEE Data Eng. Bull. 40, 3 (2017), 52–74.
http://sites.computer.org/debull/A17sept/p52.pdf

[11] Henry J. Kelley. 1960. Gradient theory of optimal �ight paths. Ars Journal 30, 10
(1960), 947–954.

[12] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization.. In ICLR (Poster), Yoshua Bengio and Yann LeCun (Eds.). http://dblp.uni-
trier.de/db/conf/iclr/iclr2015.html#KingmaB14

[13] Niko Lukač, Borut Žalik, Matej Brumen, David Jesenko, Štefan Kohek, Andrej
Nerat, and Marko Bizjak. 2019. Zasnova napredne preiskovalne platforme (NNP):
zaključno poročilo. UM FERI.

[14] Leonardo Noriega. 2005. Multilayer perceptron tutorial. School of Computing.
Sta�ordshire University (2005).

[15] TensorFlow Developers. 2022. TensorFlow. https://doi.org/10.5281/ZENODO.
4724125 Accessed: 2022-06-19.

[16] Mengjia Xu. 2021. Understanding graph embedding methods and their applica-
tions. SIAM Rev. 63, 4 (2021), 825–853.

[17] Abenov Zhansultan, Aubakirov Sanzhar, and Paulo Trigo. 2021. Parallel imple-
mentation of force algorithms for graph visualization. Journal of Theoretical and
Applied Information Technology 99, 2 (2021), 503–515.

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

8

Music genre classification based on spectrograms of the sound
recording using an ensemble of CNNs

Tadej Lahovnik
tadej.lahovnik@student.um.si

Faculty of Electrical
Engineering and Computer Science,

University of Maribor
Koroška cesta 46

SI-2000 Maribor, Slovenia

Vili Podgorelec
vili.podgorelec@um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

ABSTRACT
Several papers have attempted to classify music genres based on
the features extracted from sound recordings. However, none have
implemented an ensemble classi�er of di�erent CNNs for various
types of spectrograms.

One thousand sound recordings from the GTZAN database were
used for classi�cation by the authors. Each sound recording was
converted into three di�erent spectrogram types, resulting in 3000
spectrograms. 85% of the spectrograms were used to train three
CNN models, and the remaining 15% were used for testing. The
individual CNN models formed a classi�er ensemble, which com-
bined the predictions of respective models into a single prediction
based on the sum of the scores of respective genres.

Since the accuracy of the classi�er ensemble (54.67%) is higher
than the accuracy of the individual classi�cation models (44.00%,
53.33%, 26.67%), it was bene�cial to combine the CNN models into
one. The confusion matrix revealed some common errors in genre
prediction. The somewhat low accuracy is likely a consequence of
the truncated sound recordings. Although the classi�er ensemble
did not achieve high accuracy, it predicted the genre based on the
spectrograms of the sound recording more accurately than a human.
Weighting the individual CNN models could signi�cantly improve
the results.

KEYWORDS
classi�cation, spectrogram, machine learning, convolutional neural
network, music genre, sound recording

1 INTRODUCTION
During the last two decades, we have seen an increase in AI-driven
recommendation systems on audio streaming platforms. There are
two general approaches to music recommendation - collaborative
and content-based recommendation. While the former recommends
objects that the user group of similar preference has liked, the latter
analyses the content of objects that a user has previously preferred
and recommends the ones with relevant content [8]. For content-
based music recommendation, automatic music genre identi�cation
plays an important role.

Various machine learning (ML) methods have been developed
for accurate music genre classi�cation [7]. The algorithms behind
these systems are often based on metadata and features extracted
from sound recordings using audio processing techniques. Audio
signal processing algorithms generally involve analysis of a signal,
extracting its properties, predicting its behaviour, recognising if

any pattern is present in the signal, and how a particular signal is
correlated to other similar signals [16]. The extracted audio signal
features represent training data for a selected ML algorithm.

While such ML approaches have shown some excellent results,
there are other ways of representing and processing audio signals.
An audio signal can be visually represented with spectrograms,
potentially revealing patterns characteristic of di�erent types of
music. Existing works [3, 12] have already approached the task
using spectrograms or features extracted from sound recordings.
Di�erent spectrogram types can be used to represent an audio sig-
nal. For example, Mel spectrograms1,2 can be used instead of typical
spectrograms [3, 9, 17]. As spectrograms are visual representations
of music, the most advanced deep neural network-based image clas-
si�cation techniques can be applied to music genre classi�cation.

In this paper, we propose a new ensemble classi�cation method
that predicts the music genre of a sound recording based on sev-
eral individual convolutional neural network (CNN) models, each
trained on its type of spectrogram. To the best of our knowledge,
this is the �rst report on music genre classi�cation using an en-
semble classi�er combining di�erent types of spectrograms. An
essential advantage of the proposed method is the direct use of
spectrogram images for training the CNN models, which does not
require the often demanding process of extracting and selecting
features from sound recordings.

2 BACKGROUND
2.1 Music genre
A music genre is a category of music characterised by a partic-
ular style. A genre can also be in�uenced by social conventions,
marketing, association with a particular artist, and other external
in�uences [2].

Repetition is the foundation of genres. A genre codi�es past
repetitions and encourages new repetitions [14].

In this paper, genres represent classes for classi�cation. A class is
a set of things that can be grouped meaningfully. We often think of
a class in terms of the common properties of its members, especially
those that distinguish them from other things that are similar in
many ways [13].

1a method of representing audio visually [17]
2substitutes the frequency on the y-axis with the mel scale and indicates colours using
the decibel scale instead of the amplitude [6]

h�ps://doi.org/10.51939/scores22.03

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

9

Tadej Lahovnik and Vili Podgorelec

2.2 Spectrograms
A spectrogram represents a signal’s intensity or ’loudness’ over
time at the di�erent frequencies present in a particular waveform.
Changes in energy levels over time are displayed in a spectrogram.
[1].

Spectrograms are two-dimensional graphs, where colours repre-
sent the third dimension [1]. Time is represented on the horizontal
axis. The vertical axis represents frequency, which can also be in-
terpreted as pitch or tone. The lowest frequencies are located at the
bottom and the highest at the top.

2.3 Spectrogram generation process
The Librosa3 library allows us to generate a simple spectrogram
from a sound recording. The sound recording is converted into a
�oating point time series during the upload process. The resulting
time series must be converted from the square of the amplitude to
decibels before the spectrogram can be displayed.

Figure 1 shows an example of the �rst type of spectrograms
we used for classi�cation. The spectrogram shows the presence of
speci�c frequencies over time. Orange represents a high presence
of a particular frequency, and blue represents a low presence.

Figure 1: Spectrogram (frequency/time)

Figure 2 shows an example of the second type of spectrograms,
which shows the presence of certain tones over time. Orange colour
represents a high presence of a particular tone, and blue represents
a low presence. The markings on the y-axis indicate the individual
octaves (C1-C9).

Figure 3 shows an example of the third type of spectrograms,
which shows the presence of tones across all octaves over time.
Orange represents a high presence of a particular tone, and blue
represents a low presence. Individual marking on the y-axis includes
all matching tones from di�erent octaves.

3https://librosa.org/doc/latest/index.html

Figure 2: Spectrogram (tone/time)

Figure 3: Spectrogram (chroma/time)

2.4 Classi�cation
Classi�cation occurs in many human activities. When used in its
broadest sense, the term can refer to any situation in which a predic-
tion or decision is made based on currently available information
[10].

Numerous classi�cation algorithms exist, including decision
trees, rule-based learning, support vectors, Bayesian networks, and
convolutional neural networks (CNNs). If necessary, classi�cation
algorithms may also be combined into ensembles (e.g., boosting,
bagging, stacking, tree forests, and more) [12].

2.4.1 Neural network. A neural network is a set of algorithms that
seek to identify the underlying connections in a set of data through
a process that mimics the human brain [5].

Neural networks have three main components: an input layer, a
processing or hidden layer, and an output layer [5]. Inputs can be
weighted based on di�erent criteria.

In neural networks, learning is accomplished by altering the
weights across connections in response to new input data or learn-
ing patterns [15].

A convolutional neural network is adapted to analyse and recog-
nise visual data such as digital images or photographs [5].

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

10

Music genre classification based on spectrograms of the sound recording using an ensemble of CNNs

3 THE PROPOSED METHOD
The GTZAN database [11], which contains 1000 sound recordings,
was used for the development. Each sound recording is 30 seconds
long and belongs to one of the ten genres4 provided by the database.
The sound recordings were later converted into spectrograms using
the Librosa library.

Three di�erent types of spectrograms were created for each
sound recording in the dataset. 85% of the spectrograms were used
to train the CNN models, and the remaining 15% were used for
testing. The training set was partitioned into training and validation
sets using the Keras5 library. The validation set consisted of 30% of
the training data.

The generated images were classi�ed using CNNs provided by
the Sklearn6 library. Three separate CNN models were created,
trained, and combined into a classi�er ensemble. The predictions
of the individual models were combined into a single prediction
based on the sum of the predictions.

The classi�er ensemble was evaluated with several metrics7.
Additionally, we displayed the results with a confusion matrix,
revealing common errors of the implemented classi�er ensemble.

3.1 The ensemble of CNN models
3.1.1 The CNN model. For classi�cation, we used the sequential
model from the Keras8 library. Figure 4 shows the visualisation of
the model.

Figure 4: CNN model

The Rescaling layer standardises the input data. Conv2D creates
a 5x5 convolution kernel that is convolved with the layer input
to produce a tensor of outputs. MaxPooling2D downsamples the
input along its spatial dimensions (height and width) using a 2x2
pooling window. The Flatten layer �attens the input. The Dense
layer implements an operation that returns a vector with a length
equal to the number of classes, providing the classi�cation scores
for each respective class (music genre in our case).

3.1.2 Training a CNN model. Each CNN classi�cation model has
been trained separately on its type of spectrogram images (each
CNN model is trained from scratch with random initialisation of
weights). Fifty epochs were used to train the model. Each batch
contained 128 samples. Stochastic gradient descent was used to
4blues, classical, country, disco, hiphop, jazz, metal, pop, reggae, rock
5https://keras.io
6https://scikit-learn.org/stable
7accuracy, recall, precision, F-score
8https://keras.io/guides/sequential_model

minimise the loss function of the CNN model. The CNN model out-
puts a vector with the same length as the number of classes (music
genres). This vector represents the scores of individual classes - the
higher the score for a particular class, the higher the expectation
that the recording belongs to the corresponding music genre. Since
these values can be arbitrary, we used a function called Softmax,
which ensures that the sum of all the values is 1, thus constraining
the individual scores between 0 and 1 [4].

3.1.3 Combining CNN models into an ensemble. After each CNN
model is trained on its type of spectrogram from sound recordings,
the individual CNN classi�cations are combined into an ensem-
ble, comprising the classi�cation results of all three speci�c CNN
models. The instances of three speci�c CNN models have been
combined in a single ensemble model by averaging the outputs of
the corresponding Softmax layers. Figure 5 showcases the proposed
ensemble method.

Figure 5: The proposed ensemble classi�er

4 RESULTS
Three di�erent CNN classi�cation models were used to perform
the classi�cation. We used 150 test instances or 15% of the total
dataset for prediction.

The �rst classi�cation model (which predicted the genre based
on classical spectrograms) correctly classi�ed 66 test instances. The
accuracy of the �rst classi�cation model was 44.00%.

The second classi�cationmodel (which predicted the genre based
on spectrograms showing the presence of certain tones over time)
correctly classi�ed 80 test samples. The accuracy of the second
classi�cation model was 53.33%.

The third classi�cation model (which predicted genre based on
spectrograms showing the presence of individual tones across all
octaves over time) correctly classi�ed merely 40 test samples. The
accuracy of the third classi�cation model was 26.67%.

After combining the three individual CNN classi�ers into an en-
semble, the ensemble classi�er correctly predicted 82 test instances.
The accuracy of the ensemble classi�er is 54.67%, which is higher
than the accuracy of each CNN classi�cation model. In this manner,

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

11

Tadej Lahovnik and Vili Podgorelec

merging the individual CNN classi�cation models into an ensemble
classi�er was worthwhile.

Figure 6 shows the �nal confusion matrix of the proposed en-
semble classi�er. The labels of the individual rows show the actual
genres of the test instances, while column labels show the genre
predicted by the classi�cation ensemble. Values in the cells show
the number of test instances belonging to the genre shown in the
row, classi�ed as the genre shown in the column. In addition to
the numerical labels, we can use the colour scale found next to the
confusion matrix.

The confusion matrix shows that there are some common errors
in genre prediction. The ensemble often predicted blues as rock,
country as jazz and rock, and disco as hip hop, pop, and rock. The
most incorrect predictions occurred for the disco genre. On the
other hand, classical music seems to be the easiest to distinguish
from other genres, as it was only misclassi�ed on a few occasions
with jazz.

Figure 6: Confusion matrix

5 CONCLUSIONS
Although the achieved classi�cation accuracy (54.67%) does not
seem to be very high, we have to consider that it is di�cult to
distinguish between 10 di�erent music genres, even for a human.
Thus, we are satis�ed with the result. However, there is still plenty
of room for improvement.

Librosa produces wide white margins around the spectrogram,
which are useless for classi�cation. The spectrograms could be
cropped to ensure that only the spectrogram is present in each
image.

Classi�cation of a music genre based on spectrograms is not
the most accurate. The low accuracy is most likely also due to the
truncated music �les. Each sound recording is only 30 seconds
long. If the dataset contained full tracks, we would have a more
representative sample, which would most likely improve the results.

A single track may belong to several di�erent genres. Therefore,
performing a multi-label classi�cation and comparing the results
would be reasonable. Alternatively, the multi-label classi�cation
model could be used within the classi�er ensemble.

Features could be extracted from the sound recordings, and an-
other classi�cation model could be added to the classi�er ensemble.
The classi�cation would likely be more accurate as these features
contain additional information.

It might also be worth considering weighing the individual clas-
si�ers in the ensemble. As a result, each classi�er would not neces-
sarily contribute the same amount to the �nal ensemble prediction.

ACKNOWLEDGMENTS
The authors acknowledge the �nancial support from the Slovenian
Research Agency (research core funding No. P2-0057).

REFERENCES
[1] [n. d.]. Spectrogram. https://en.wikipedia.org/wiki/Spectrogram Accessed:

2022-07-28.
[2] Shlomo Argamon, Kevin Burns, Shlomo Dubnov, and Roger B Dannenberg. 2010.

Preprint from The Structure of Style: Algorithmic Approaches to Understanding
Manner andMeaning Style in Music. , 45-58 pages. http://www.cs.cmu.edu/~rbd/

[3] Hareesh Bahuleyan. 2018. Music Genre Classi�cation using Machine Learning
Techniques. (4 2018). http://arxiv.org/abs/1804.01149

[4] Hmrishav Bandyopadhyay. 2022. Image Classi�cation Explained. https://www.
v7labs.com/blog/image-classi�cation-guide

[5] James Chen. 2021. Neural Network. https://www.investopedia.com/terms/n/
neuralnetwork.asp

[6] Ketan Doshi. 2021. Audio Deep Learning Made Simple - Why Mel Spectrograms
perform better. https://ketanhdoshi.github.io/Audio-Mel/

[7] Ahmet Elbir, Hilmi Bilal Çam, Mehmet Emre Iyican, Berkay Öztürk, and Niza-
mettin Aydin. 2018. Music genre classi�cation and recommendation by using
machine learning techniques. In 2018 Innovations in Intelligent Systems and Ap-
plications Conference (ASYU). IEEE, 1–5.

[8] Dongmoon Kim, Kun-su Kim, Kyo-Hyun Park, Jee-Hyong Lee, and Keon Myung
Lee. 2007. A music recommendation system with a dynamic k-means clustering
algorithm. In Sixth international conference on machine learning and applications
(ICMLA 2007). IEEE, 399–403.

[9] Jash Mehta, Deep Gandhi, Govind Thakur, and Pratik Kanani. 2021. Music Genre
Classi�cation using Transfer Learning on log-based MEL Spectrogram. Proceed-
ings - 5th International Conference on Computing Methodologies and Communica-
tion, ICCMC 2021, 1101–1107. https://doi.org/10.1109/ICCMC51019.2021.9418035

[10] Donald Michie, David J Spiegelhalter, and Charles C Taylor. 1994. Machine
learning, neural and statistical classi�cation. (1994).

[11] Andrada Olteanu. 2020. GTZAN Dataset - Music Genre Classi�ca-
tion. https://www.kaggle.com/datasets/andradaolteanu/gtzan-dataset-music-
genre-classi�cation

[12] Nikki Pelchat and Craig M. Gelowitz. 2020. Neural Network Music Genre Classi-
�cation. Canadian Journal of Electrical and Computer Engineering 43 (6 2020),
170–173. Issue 3. https://doi.org/10.1109/CJECE.2020.2970144

[13] Claude Sammut and Geo�rey I Webb. 2011. Encyclopedia of machine learn-
ing. Springer Science & Business Media. https://books.google.si/books?id=
i8hQhp1a62UC

[14] Jim Samson. 2001. Genre. Vol. 1. Oxford University Press. https://doi.org/10.
1093/gmo/9781561592630.article.40599

[15] Yi Shang and Benjamin WWah. 1996. Global optimization for neural network
training. Computer 29 (1996), 45–54. Issue 3.

[16] Garima Sharma, Kartikeyan Umapathy, and Sridhar Krishnan. 2020. Trends in
audio signal feature extraction methods. Applied Acoustics 158 (2020), 107020.

[17] Sugianto Sugianto and Suyanto Suyanto. 2019. Voting-based music genre classi�-
cation usingmelspectogram and convolutional neural network. 2019 International
Seminar on Research of Information Technology and Intelligent Systems (ISRITI),
330–333.

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

12

Super-Resolution Method for Reconstructing Street Images from
Surveillance System based on Real-ESRGAN

Nguyen Quoc Toan
quoctoann3@gmail.com

Department of Electronic and Electrical Engineering,
Hongik University,

94 Wausan-ro, Mapo-gu,
Seoul, Republic of Korea

ABSTRACT
In many cities around the world, large sums of money are invested
in surveillance camera systems, but few optimize the bene�ts and
costs of those investments, and thus the overall impact of surveil-
lance cameras on crime rates. In this paper, based on a technique
named Real-ESRGAN applied to a practical restoration application
that has been enhanced by the e�cient ESRGAN. It is a super-
resolution method that was developed in blind super-resolution
to reinstate low-resolution street images with unknown and com-
plicated degradations. It can be applied for security purposes in
surveillance systems. Since video surveillance systems typically
capture low-resolution images in many areas, the detection and
identi�cation of objects are sometimes required. This task’s super-
resolution is tough because image appearances vary depending on
a variety of factors. The low resolution combined with poor op-
tics is completely insu�cient for identifying the subject of interest
on the street, from a distance, in bad weather, or under any other
limitations. Furthermore, to strengthen discriminator capability
and create stable training dynamics, the U-Net discriminator was
employed with spectral normalization. Hence, when compared to
other experimental techniques, it can be demonstrated that this
method delivers the best result. Experiment results show that super-
resolution recovery of street images taken from a surveillance sys-
tem is attainable with the following results: PSNR: 30.36dB and
SSIM: 0.86.

KEYWORDS
computer vision, super-resolution, GAN, U-Net, Real-ESRGAN

1 INTRODUCTION
Image resolution is a signi�cant factor in calculating image quality.
The better the resolution, the more detailed the information in the
image, making it more robust for objects on street recognition tasks.
Improving image resolution has always been an unstoppable pursuit
of industry and academia. Real-ESRGAN [11] has been applied due
to its signi�cant improvements compared to other experimental
methods. The ESRGAN [12] was extended by Real-ESRGAN, to
restore general real-world LR images by combining training sets
with a more practical degradation process.

Simply put, Real-ESRGAN extends the classical "�rst-order"
degradation model to "high-order" degradation modeling tech-
niques, i.e., the degradations are modeled with multiple repeated
degradation processes, each of which is the classical degradation
model. A second-order degradation process is used empirically to

obtain a great harmony of simplicity and e�ectiveness. A recent pa-
per [14] assumes a random shu�ing strategy for synthesizing more
practical degradations. But even so, it still includes a set amount
of degradation processes, and it is unclear whether all the shu�ed
degradations are useful. High-order degradation modeling, on the
other hand, is more adaptable and aims to imitate the real degra-
dation generation process, B8=2 �lters in the synthesis procedure
are employed to simulate ringing and over-shoot artifacts. Because
the degradation space can be much bigger than ESRGAN, training
becomes tough. First, the discriminator must be more powerful to
distinguish realness from complicated training output. Secondly, the
discriminator’s gradient feedback should be more precise for local
information improvement. In Real-ESRGAN, a VGG-style discrimi-
nator was upgraded to a U-Net design [7][8][13]. Thirdly, the U-Net
architecture and complex degradations increase training instability.
To balance the training dynamics, spectral normalization (SN) reg-
ularization [6][8] was used. It is simple to train Real-ESRGAN and
obtain stability of local detail advancement and artifact suppression
with the dedicated improvements.

2 REAL-ESRGAN
2.1 Classical Degradation Model
Blind SR recovering high-resolution images from low-resolution
images that have undergone unknown and intricate degradations.
Based on the underlying degradation process, existing techniques
can be divided into two categories: explicit modeling and implicit
modeling. The classic degradation model [1][4] is widely used in
explicit approaches [2][3][15] and includes blur, downsampling,
noise, and JPEG compression. To generate the low-resolution input,
the classical degradation architecture [1][4] is commonly utilized.
In general, the ground-truth image ~ can be convolved with the
blur kernel : �rst. Afterward, with scale factor A , a downsampling
operation is applied. Adding noise = yields the low-resolution G .
Lastly, JPEG compression is used because it is ubiquitous in real-
world images. In general, D represents the process of degradation.

G = ⇡ (~) = [(~ ⇤ :) #A +=] � %⇢⌧ , (1)

• Blur.Gaussian �lters, both isotropic and anisotropic, are se-
lected. Although Gaussian blur kernels are typically utilized
to model blur degradation, they may still not accurately
represent real camera blur. Gaussian blur kernels [5] and a
plateau-shaped allocation implement more diverse kernel
shapes are generalized as well.

h�ps://doi.org/10.51939/scores22.04

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

13

Nguyen�oc Toan

Figure 1: Illustration of High-order data generation Real-ESRGAN

• Noise. The additive Gaussian and Poisson noise types are
applied. The probability density function of additive Gauss-
ian noise is the same as the Gaussian distribution. The noise
intensity is governed by the Gaussian distribution’s stan-
dard deviation. Color noise occurs when unbiased sampled
noise is present for each channel of RGB images. The Pois-
son distribution is initiated by Poisson noise. It is frequently
used to estimate sensor noise caused by statistical quantum
�uctuations, or variations in the photon �ux sensed at a
given exposure level. Poisson noise has a value proportional
to image intensity, and noises at the pixel level are self -
reliant.

• Resize (Downsampling). Downsampling is known as the
resize operation. Nearest-neighbor interpolation, area re-
size, bilinear interpolation, and bicubic interpolation are all
resize algorithms. Di�erent resize operations yield di�er-
ent outcomes, some produce blurry images, while others
may produce over-sharp ones with overshoot artifacts. To
include more diverse and complex resize e�ects, a random
resize operation from the options listed above. Nearest-
neighbor interpolation is included because it exposes the
misalignment issue and only deems the area, bilinear, and
bicubic operations.

• JPEG compression. It is a prevalent lossy compression
methodology for digital images. It decodes images to the
YCbCr color space �rst, then downsamples the chroma
channels. After that, the features are extracted into 8 x
8 blocks, and each block is converted with a 2D discrete
cosine transform (DCT). [10] provides more information
on JPEG compression algorithms. JPEG compression fre-
quently presents unappealing block artifacts. A quality fac-
tor @ 2 [0, 100] re�ects the quality of compressed images,
with a lower q indicating a higher compression ratio and
lower quality.

2.2 High-order Degradation Model
When we use the above classical degradation model to generate
training pairs, the trained model can handle some real-world sam-
ples. Nevertheless, it is still unable to handle some complex degrada-
tions in the real world, particularly unknown noises, and complex
artifacts. This is due to the fact that synthesized low-resolution
images still have a signi�cant di�erence from realistic degraded
images. To model more practical degradations, the classical degra-
dation model was extended to a high-order degradation process.

The classical degradation model only involves a limited number of
fundamental degradations, which can be thought of as �rst-order
modeling. Notwithstanding, real-world degradation is quite vari-
ous and typically consists of a series of mergers such as imaging
systems of cameras, image collection quality from video, and so
on. In particular, the original image could be a very limited pixel
image that the surveillance camera can get far away from the set
up system, which inevitably contains degradations such as camera
blur, sensor noise, and low resolution.

The classical �rst-order model could not model such a complex
deterioration process. Therefore, a high-order degradation model
is employed. An =-order model consists of = repeated degradation
processes (as shown in Eq.2), in which each degradation process pre-
cedes the classical degradation model Eq.1 but with di�erent hyper-
parameters. It should be highlighted that the term "high-order" is
deployed di�erently here than it is in mathematical operations. It
primarily refers to the time required to complete the same opera-
tion. [14] suggests that the random shu�ing strategy encompasses
repetitive degradation processes (e.g., double blur or JPEG). The
key is the high-order degradation process which indicates that not
all of the shu�ed degradations are intended. To maintain a reason-
able image resolution, the downsampling equation is altered with
a random resize execution. Therefore, a second-order degradation
process is employed, as it can remedy most real-world problems
while remaining simple. The general �ow of data generation stream
is represented in Fig.1.

G = ⇡= (~) = (⇡= � ... � ⇡2 � ⇡1) (~) (2)

2.3 Ringing and overshoot artifact
Ringing artifacts commonly occur as spurious edges near sharp
image transitions. They appear as bands near the edges. Overshoot
artifacts are frequently combined with ringing artifacts, which man-
ifest as a higher jump at the edge transition. The primary source of
these artifacts is that signal is bandlimited and lacks high frequen-
cies. These artifacts are very common and are typically caused by
a sharpening algorithm, JPEG compression, and so on. B8=2 �lter
assists in cutting o� high frequencies and synthesizing ringing and
overshoot artifacts for training sets, its �lters are deployed twice:
during the blurring process and at the end step of the synthesis.
The arrangement of the last B8=2 �lter and JPEG compression is
randomized transferred to cover a larger degradation space because
some images may be over-sharpened (with overshoot artifacts) and
then JPEG compressed, while others may be JPEG compressed �rst

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

14

Super-Resolution Method for Reconstructing Street Images from Surveillance System based on Real-ESRGAN

and then sharpened. The equation of B8=2 is represented in Eq.3,
where (i,j) represents the kernel coordinate, l2 denotes the cuto�
frequency, and �1 means the �rst order Bessel operation of the �rst
kind:

: (8, 9) = l2

2c
p
82 + 92

�1 (l2

p
82 + 92) (3)

2.4 Networks and Training
2.4.1 ESRGAN. Firstly, the same generator (SR network) as ESR-
GAN [12] Fig.2 is used, i.e., a deep network with residual-in-residual
dense blocks (RRDB). In conducting super-resolution with scale fac-
tors of x2 and x1, the extension with x4 ESRGAN architecture was
represented. Since ESRGAN is a large network, the pixel-unshu�e
(an inverse function of pixelshu�e [9]) was used before continuing
to feed inputs into the main ESRGAN architecture to lower spa-
tial size and increase channel size. As a result, most calculations
are conducted in a smaller resolution space, which relieves GPU
memory and the computational consumption of resources.

2.4.2 U-Net discriminator with spectral normalization (SN). Since
Real-ESRGAN tackles a much bigger degradation space than ES-
RGAN, the existing discriminator architecture in ESRGAN is no
longer appropriate. For complex training outputs, the discrimina-
tor in Real-ESRGAN necessitates more discriminative ability. It
must ensure an accurate gradient responses for local textures in
addition to discriminating global styles. The VGG-style discrimi-
nator in ESRGAN was enhanced to a U-Net architecture with skip
connections, inspired by [8][13]. The U-Net generates realness val-
ues for each pixel that can provide the generator with detailed
per-pixel responses. Meanwhile, the U-Net architecture and com-
plicated degradations increase training instability. Regularization
of spectral normalization [6] can aid in the stabilization of training
dynamics. Furthermore, spectral normalization can help to reduce
the oversharpness and annoyance caused by GAN training. Real-
ESRGAN training can easily reach a better balance of local detail
improvement and artifact suppression with these adjustments.

3 EXPERIMENT
3.1 Dataset
A brand-new dataset collected byHAILwas used for the experiment.
It was collected by recording videos on streets in Seoul, South Korea
with a Hanwha Techwin PNO-A9081RLP camera, then frames were
extracted into images. There are 4500 images in total for use. The
resolution is 4K (4096 x 2160). And 3500 crop images in the test
set only included license plates, car brands, and text on the car for
model evaluation. Fig.3 is samples from the proposed dataset.

3.2 Result
The luminance-based evaluation and comparison criteria, SSIM
(Structural Similarity) and PNSR (Peak Signal-to-Noise Ratio) are
used. To illustrate, two images were used for these evaluations.
We refer to them as image 1 and image 2. Image 1 is the original
degraded image from the test dataset, while image 2 is a reconstruc-
tion of image 1. SSIM is a method for calculating the similarity of
two images. The SSIM values range from -1 to 1. PSNR is calculated
to compare the quality of image 1 to image 2 which is calculated by

Table 1: Results comparison between Real-ESRGAN, BSR-
GAN and Bicubic

Method Bicubic BSRGAN Real-ESRGAN

PSNR (dB) 25.51 28.09 30.36
SSIM 0.71 0.76 0.86

using the mean squared error (MSE). MSE is a statistical concept
that means that an estimator’s mean square error is the mean of the
squares of the errors, or the di�erence between the estimate and
what is evaluated, lower value means better performance. On the
contrary, the greater the value of SSIM and PSNR, the higher the
quality of the reconstructed image followed by Eq.4. . represents
the ground truth (reference) and. ⇤ describes reconstructed images:

%(#'(. ,. ⇤) = 10 log10
2552

"(⇢
(4)

"(⇢ =
1

"#

"’
8=1

#’
9=1

(. ⇤ (8, 9) � . (8, 9))2 (5)

The SSIM evaluation between patches %. ⇤ and %. is formulated as:

((�" (%. ⇤ , %.) =
(2`%. ⇤`%. + 21) (2f. ⇤f%. + 22)

(`2%. ⇤ + `2%. + 21) (f2%. ⇤ + f2%. + 22)
(6)

where `%. ⇤ (`%.) and f%. (f%. ⇤) are the knowing and standard
deviation of patch %. ⇤ (%.). 21 and 22 are minor constants. So, the
mean score of patch-based SSIM over the image is SSIM (. ⇤,.).

4 CONCLUSION
In this paper, by applying Real-ESRGAN, a method for reconstruct-
ing low-resolution street images into recognizable images accept-
able for recognition information tasks. The model achieved out-
standing results (SSIM:0.86, PSNR:30.36dB). It proved that gener-
ating degraded real-life scenarios input play an extremely vital
role in super-resolution models for street image recognition tasks.
Real-ESRGAN performs greatly in the removal of artifacts and the
restoration of texture details.

ACKNOWLEDGMENTS
I would like to express my heartfelt appreciation to HAIL (Hongik
University - Arti�cial Intelligence Laboratory, Seoul, Republic of
Korea), which is advised by Professor SeongwonCho, for facilitating
me in carrying out this research.

REFERENCES
[1] Michael Elad and Arie Feuer. 1997. Restoration of a single superresolution

image from several blurred, noisy, and undersampled measured images. IEEE
transactions on image processing 6, 12 (1997), 1646–1658.

[2] Jinjin Gu, Hannan Lu, Wangmeng Zuo, and Chao Dong. 2019. Blind super-
resolution with iterative kernel correction. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. 1604–1613.

[3] Yan Huang, Shang Li, Liang Wang, Tieniu Tan, et al. 2020. Unfolding the alter-
nating optimization for blind super resolution. Advances in Neural Information
Processing Systems 33 (2020), 5632–5643.

[4] Ce Liu and Deqing Sun. 2013. On Bayesian adaptive video super resolution. IEEE
transactions on pattern analysis and machine intelligence 36, 2 (2013), 346–360.

[5] Yu-Qi Liu, Xin Du, Hui-Liang Shen, and Shu-Jie Chen. 2020. Estimating general-
ized Gaussian blur kernels for out-of-focus image deblurring. IEEE Transactions
on circuits and systems for video technology 31, 3 (2020), 829–843.

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

15

Nguyen�oc Toan

Figure 2: ESRGAN generator network. It �rst uses a pixel-unshu�le operation to decrease the spatial size and re-arrange
information to the channel dimension for scale factors of x1 and x2.

(a) (b) (c)

Figure 3: a is sample from the train set, b and c are samples from the test set

Figure 4: Reconstructed image result comparing between Real-ESRGAN vs BSRGAN and Bicubic

[6] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. 2018.
Spectral normalization for generative adversarial networks. arXiv preprint
arXiv:1802.05957 (2018).

[7] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolutional
networks for biomedical image segmentation. In International Conference on
Medical image computing and computer-assisted intervention. Springer, 234–241.

[8] Edgar Schonfeld, Bernt Schiele, and Anna Khoreva. 2020. A u-net based dis-
criminator for generative adversarial networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 8207–8216.

[9] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz, Andrew P Aitken,
Rob Bishop, Daniel Rueckert, and Zehan Wang. 2016. Real-time single image and
video super-resolution using an e�cient sub-pixel convolutional neural network.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
1874–1883.

[10] Richard Shin and Dawn Song. 2017. Jpeg-resistant adversarial images. In NIPS
2017 Workshop on Machine Learning and Computer Security, Vol. 1. 8.

[11] Xintao Wang, Liangbin Xie, Chao Dong, and Ying Shan. 2021. Real-esrgan: Train-
ing real-world blind super-resolution with pure synthetic data. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 1905–1914.

[12] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,
and Chen Change Loy. 2018. Esrgan: Enhanced super-resolution generative
adversarial networks. In Proceedings of the European conference on computer
vision (ECCV) workshops.

[13] Yitong Yan, Chuangchuang Liu, Changyou Chen, Xianfang Sun, Longcun Jin,
Xinyi Peng, and Xiang Zhou. 2021. Fine-grained attention and feature-sharing
generative adversarial networks for single image super-resolution. IEEE Trans-
actions on Multimedia 24 (2021), 1473–1487.

[14] Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timofte. 2021. Designing a
practical degradation model for deep blind image super-resolution. In Proceedings
of the IEEE/CVF International Conference on Computer Vision. 4791–4800.

[15] Kai Zhang,Wangmeng Zuo, and Lei Zhang. 2018. Learning a single convolutional
super-resolution network for multiple degradations. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 3262–3271.

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

16

An analysis of time complexity and a discussion on
interpretability for two methods of constructing social network

graphs
Žan Jonke

zj0527@student.uni-lj.si
Faculty of Computer and
Information Science,

University of Ljubljana
Večna pot 113

1000 Ljubljana, Slovenia
Munich Innovation Labs GmbH

Pettenkoferstr. 24
80336 Munich, Germany

ABSTRACT
Gathering useful information from user interactions on social me-
dia is a challenging task but has several important use cases. For
example, law enforcement agencies monitor social media for threats
to national security, marketers use them for launching marketing
campaigns, etc. Since most social media platforms do not provide a
standardized way of monitoring their data, most analyses are car-
ried out manually. We aim to expedite this process by constructing
social network graphs, where analysts can visually determine what
users and contents are important. In this paper we compare two
di�erent approaches for constructing such graphs (path-weighted
and degree-weighted). We analyze the time complexity of graph
construction and discuss the usefulness of their visualization. In
order to empirically evaluate both approaches, a method was de-
veloped, which stochastically generates data adhering to rules that
govern the generation of data on a social media platform. We found
that constructing degree-weighted graphs is faster, although the
visualization of a path-weighted graph can answer more questions
about the dataset.

KEYWORDS
Social media, network analysis, graph construction complexity

1 INTRODUCTION
Social media platforms have grown in popularity over the last two
decades, manifesting several new ways of how humans interact
with one another. The central idea is that users post contents and
other users interact with them. For example, on Facebook [9] users
post photos, write texts, create events etc. and other users like,
comment or re-post the contents.

Law enforcement agencies monitor social media platforms for
extremist groups, which might use them for spreading misinfor-
mation, incitement of violence or other forms of threat to national
security [8, 14].

The application of social network analysis in marketing can
provide marketers with valuable insights for developing commu-
nication and branding strategies by building up social capital in
social networking sites [1, 5].

How data is collected from such platforms and what information
can be extracted is of great utility. Being able to visually consider
a network and to investigate it manually can be of great impor-
tance to analysts. In order for such a visualization to be bene�cial,
appropriate parts of the network graph (i.e. important users and
content) must visually stand out. Our aim is to provide two ways
of doing so and comparing them to one another from a technical
perspective i.e. analyzing how much time is needed to construct
such graphs and comparing them in terms of interpretability of
their visualization.

2 RELATEDWORK
Social network graphs can be constructed based on direct or inferred
relations, including re-posting, replying or mentioning, through the
shared use of hashtags or URLs, reciprocation or minimum levels of
interaction activity, or friend/follower connections [4]. Karunasek-
era et al. [12] constructed networks of Twitter [10] accounts based
on re-posts and mentions to discover communities active during the
2017 German election, valuing mentions and re-posts equally. URL
sharing behaviour is often studied in the detection and classi�cation
of spam and political campaigns [2, 7, 17].

Edwards et al. [6] evaluated several di�erent approaches of ex-
tracting social network graphs from datasets, which included link-
ing two people if they were detected at the same event. Nasim et
al. [13] introduce an approach of how to detect content polluting
bots on Twitter. Their approach was to construct a two-mode user-
event network linking two users if they had posted contents on the
same day. Nguyen Vo et al. [16] constructed social network graphs
which helped them evaluate an algorithm for revealing and detect-
ing malicious re-posting groups. In their approach they considered
only re-posts between users and for each pair determined re-post
similarity and connected them if it was high enough.

3 METHODS
3.1 Constructing graphs
In this section we propose two di�erent methods of constructing
discrete graphs given a dataset which can be obtained from a social
media platform. The dataset contains entities called users and the

h�ps://doi.org/10.51939/scores22.05

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

17

Žan Jonke

content that they generated. Contents can also be reactions to one
another i.e. a comment or a share.

Both methods have nodes of classes "user", "content", "comment"
and "share". The methods di�er in the way how edges are formed
between the nodes, in which direction they are oriented and in the
way the node weight is calculated.

The �rst method calculates node weights based on their degree
(degree-weighted). We present this method in graph theoretic terms
as follows:

Let ⌧3 (+ , ⇢) be a directed (degree-weighted) graph. Let* ⇢ +
be the set of users, ⇠ ⇢ + the set of contents, ⇠2 ⇢ + the set of
comments and ⇠B ⇢ + the set of shares. Let D 2 * , 2 2 ⇠ , 22 2 ⇠2
and 2B 2 ⇠B . Edges {(D, 2), (D, 22), (D, 2B)} ⇢ ⇢ only ifD is the author
of 2 , 22 or 2B . In this method there are no edges linking directly
comments to contents or shares. Such a relation is represented
as two edges {(D, 2), (D, 22)} ⇢ ⇢ where D is the author of 22 (the
same holds for 2B should 22 be a comment on a share). Shares are
modelled in the same manner. The weights of edges are equal to 1,
however the weights of nodes are equal to the node degrees.

The second method is based on calculating the node weight
based on the number of simple paths that lead to that node (path-
weighted). We present this method in graph theoretic terms as
follows:

Let⌧? (+ , ⇢) be a directed (path-weighted) graph. Sets and nodes
are de�ned as above. Edges {(2,D), (22 ,D), (2B ,D)} ⇢ ⇢ only if D is
the author of 2 , 22 or 2B and {(22 , 2), (22 , 2B), (22 , 22), (2B , 2), (2B , 2B)}
⇢ ⇢ only if 22 is a comment to 2 , 2B or 22 or if 2B is share of 2 or
2B . The weights of all edges are equal to 1, but the weights of all
nodes are equal to the number of directed simple paths ending in
that node.

Cycles in the network would prevent the calculation of node
weights from converging. The proposed connection rules guarantee
that no cycles exist in the resulting networks. This can be easily seen
in the following way: a node in a cycle must have both incoming
and outgoing edges. As such * nodes can not be part of a cycle
(they only have incoming edges).⇠ nodes may have both incoming
(from comments or shares) and outgoing (to the authors) edges. In
order for a cycle to be formed there would need to be a directed
edge from an author of the content to its comment, this is however
not possible since such an edge is not de�ned. The same proof can
be applied to both ⇠2 and ⇠B nodes.

The degree-weighted graph can be easily understood and o�ers
quick means for analysis, while the path-weighted graph is a bit
more complex, albeit o�ers more in-depth information. In �gure 1
we illustrate examples for both methods on the same dataset.

3.2 Generating random data
We want to empirically evaluate the time complexity of construc-
tion of both graphs and as such need many datasets with di�erent
numbers of contents and comments. Datasets from social media
platforms varying in size might however be governed by di�erent
social dynamics, which have an e�ect on the network topology.
Sampling from those datasets hence carries the risk of introducing
an uncontrolled selection bias. Therefore we propose a way to arti�-
cially generate data (only systematically biased by the assumptions
being made) in a stochastic manner governed by two parameters:

User 1

User 2

User 3

Post 1

Comment 1

Share 1
Post 1

Comment 1

Share 1

User 1

User 2

User 3

Posted by

Reaction to

Posted by

Share of

Posted by

Legend (edges):

Posted

Posted

Posted

Reacted to

Shared

Legend (edges):

Node weight

Figure 1: Example of a path-weighted (left) and degree-
weighed graph (right) on the same dataset.

• the number of contents generated, denoted as #
• the probability that the new content generated is a com-

ment, denoted as ?2
Our approach makes the assumptions that very little content on
social media gains very high attention and that most users either
post content or react to it but rarely both. To re�ect this, each ran-
dom content node that got generated got assigned a weight, which
was sampled from a Pareto distribution [3], which is a power-law
probability distribution that is used in description of social, quality
control, scienti�c, geophysical, actuarial, and many other types of
observable phenomena. This weight was used for weighed sam-
pling, when assigning user reactions i.e. comment and shares to
contents. Each user also got assigned a weight upon creation also
sampled from a Pareto distribution, which got used when sampling
users for authors of contents. A second weight is generated, which
is equal to the inverse of the previous one and is used when sam-
pling users for authors of comments. Using an inverse and weighed
sampling manifests unsymmetrical behaviour of users in regards to
their posting habits of contents and comments. We observed that
most users who post high impact content are more likely to do so
more often than others. To re�ect this, the weights of all contents
got multiplied by the weight of its author (i.e. the user). We also
wanted to capture the observation that new users are more likely to
enter a discourse, when a popular post was made. As such, when a
new random content got generated with a high enough weight, the
probability of a new user spawning in their respective pool, got in-
creased and linearly decayed with each new content generated. We
also assumed that content shares are more similar to content than
they are to comments and therefore introduced a transformation
from content to share, which was dependent only on an individual
user and their probability to post a share. For each share, a content
was sampled using their respective weights. To take into account
nested comments, these can also be sampled when assigning user
reactions, however we observed these are not as frequent and as
such their weights are sampled from the uniform distribution.

4 RESULTS
4.1 Time complexity of construction
We assume a dictionary representation of a discrete graph. Com-
puting a degree-weighted graph takes O(|+ |) time. This can be
achieved by iterating over all contents, comments and shares and
adding corresponding nodes and edges. Calculating node weights

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

18

An analysis of time complexity and a discussion on interpretability for two methods of constructing social network graphs

Figure 2: Time complexities of graph construction for both
methods. Both depend linearly on |+ | + |⇢ |.

takesO(|+ |) time because all that is needed is looping over all nodes
and calculating the node degree, which can be done in constant
time.

Constructing a path-weighted graph as described above takes
O(|+ |) time since the same concept of looping over all contents,
comments and shares can be used. Now we consider calculating
node weights. Calculating one simple directed path between two
nodes using depth �rst search takes O(|+ | + |⇢ |) time [15]. Naively
doing so for all nodes and all possible paths results in a combinato-
rial explosion in terms of time complexity. This analysis assumes
that lengths of paths are comparable to |+ |. However in our case
this assumption can not be made since long paths require nested
comments or shares i.e. comments to comments or shares of shares.
For simplicity we exclude such paths from our analysis since we
observed those are usually not found very frequently in interactions
on social media. We estimate that calculating all simple paths for all
nodes to take O(|+ | + |�|) time, where � is a list of all ancestors of
all nodes. We assume that calculating all ancestors of a node to be
constant since we are not considering nested comments or shares.
The following observations can be made:

• |�| ⇡ |+ | + |⇢ | since every edge roughly introduces one
new ancestor,

• a node might have a large number of ancestors, however
each ancestor has at most two outgoing edges and is at
most at a distance 2 from the source, meaning that depth
�rst search �nds all simple paths between two nodes in
constant time.

When |+ | gets large enough, most of the time needed for the compu-
tation of a path-weighted graph is used for calculating node weights.
Therefore calculating a path-weighted graph takes O(|+ |+ |⇢ |) time.

An empirical evaluation of time complexity can be seen in �gure
2. Datasets of di�erent sizes were constructed with # ranging from
0 to 45000 with a step of 500. At every step we generated 30 random
datasets using the above described method and measured time of
construction for both approaches.

Figure 3: Comparison of interpretability of the path-
weighted (left) and degree-weighted (right) graph. It is not
possible to determine to what content does the comment
belong to in the degree-weighed graph.

4.2 Interpretability
Here we demonstrate a way how one could interpret the node
weights and degrees of both types of graphs. In a degree-weighted
graph a content’s weight re�ects the sum of all users that reacted to
it, with either a comment or a share. The same interpretation can be
made for both comment and share nodes. A user’s weight re�ects
the sum of all their activities. Conversely, in a path-weighted graph
a content’s weight re�ects the sum of all comments and shares
written as a reaction to it, hence its "impact". As before, the same
interpretation can be made for both comments and shares. A user’s
weight re�ects the sum of the contents written by the user (the
"activity") plus the sum of the their impacts (total impact), hence
their (relative) importance. Additionally the degrees of nodes in
a path-weighted graph can be interpreted as weights of degree-
weighted graphs.

As an edge is missing from either a comment or a share to the
content in a degree-weighted graph, this results in an ambiguity.
Consider �gure 3. It shows two visualizations of the same data. For
the degree-weighted graph it can not be determined by visualization
alone where the comment belongs to, however this is not the case
for the path-weighted graph.

4.3 Visualization
Here we show some visualizations of networks using the random
data generating model described above. We generated two datasets
with values of # equal to 1000 and 2000 and ?2 equal to 0.8. In
�gures 4 and 5 two visualizations of path-weighted and degree-
weighted graphs are shown. The visualizations were done using
a Javascript library called vis.js where graph physics enable for a
more �exible visualization. The physics solver ForceAtlas2 was used
[11]. The tool allows for zooming and makes even larger networks
still manageable to analyze manually. However, these visualizations
take a lot of computing power and it becomes very time consuming
to render networks which contain more than 5000 nodes. This issue
can be mitigated by using alternative libraries with GPU support.

5 DISCUSSION
We have presented and analyzed two di�erent approaches (path-
weighted and degree-weighted) for constructing directed graphs
from data modelling social media networks. We have shown that in
terms of time complexity the degree-weighted graphs are favourable,
since they require less time to construct, although the di�erence
only becomes noticeable when the dataset is very large.

The advantages of degree-weighted graphs are that they are fast
to construct and their visualizations are easy to interpret regarding
questions about the most popular posts and which users post most

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

19

Žan Jonke

Figure 4: Visualizations of degree-weighted graphs with #
equal to 1000 (left) and 2000 (right).

Figure 5: Visualizations of path-weighted graphs with #
equal to 1000 (left) and 2000 (right). The same datasets were
used as in �gure 4.

frequently. The corresponding nodes will have a high weight and
therefore visually stand out. A disadvantage of this method is that
further analysis is harder to conduct i.e. it is harder to answer
questions about the most important users, the impact of individual
posts and about the users most people interact with.

The advantage of path-weighted graphs is for analysts to be
able to answer the above questions more easily since all relations
are unambiguously re�ected by graph edges and more meaningful
weights are given to content and user nodes. However, the disad-
vantage of this method is that network graph construction takes a
longer time.

Analysing our model for generating random social media data,
we �nd that it lacks modelling of phenomena where users are more
likely to react with only a small pool of users (their friends and
family), rather than with users who post the most popular content.

As a next step we plan to test the validity of our �ndings on real
social media data and analyse the time complexities of adding new
nodes to an existing graph in a realistic monitoring scenario.

ACKNOWLEDGMENTS
Wewould like to express our very great appreciation to Mathias Uh-
lenbrock and Oussama Jarrousse for their valuable and constructive
suggestions during the planning and development of this research
project.

REFERENCES
[1] Ioannis Antoniadis and Anna Charmantzi. 2016. Social network analysis and

social capital in marketing: theory and practical implementation. International
Journal of Technology Marketing 11 (01 2016), 344. https://doi.org/10.1504/
IJTMKT.2016.077387

[2] Cheng Cao, James Caverlee, Kyumin Lee, Hancheng Ge, and Jinwook Chung.
2015. Organic or Organized? Exploring URL Sharing Behavior. (2015), 513–522.

https://doi.org/10.1145/2806416.2806572
[3] Henry T. Davis and Michael L. Feldstein. 1979. The Generalized Pareto Law as a

Model for Progressively Censored Survival Data. Biometrika 66, 2 (2022/09/27/
1979), 299–306. https://doi.org/10.2307/2335662

[4] Lewis Mitchell Derek Weber, Mehwish Nasim and Lucia Falzon. 2021. Exploring
the e�ect of streamed social media data variations on social network analysis.
CoRR abs/2103.03424 (2021). arXiv:2103.03424 https://arxiv.org/abs/2103.03424

[5] Shaun Doyle. 2007. The role of social networks in marketing. Journal of Database
Marketing Customer Strategy Management 15, 1 (2007), 60–64. https://doi.org/
10.1057/palgrave.dbm.3250070

[6] Michelle Edwards, Jonathan Tuke, Matthew Roughan, and Lewis Mitchell. 2020.
The one comparing narrative social network extraction techniques. In 2020
IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM). 905–913. https://doi.org/10.1109/ASONAM49781.2020.
9381346

[7] Fabio Giglietto, Nicola Righetti, Luca Rossi, and Giada Marino. 2020. It
takes a village to manipulate the media: coordinated link sharing behavior
during 2018 and 2019 Italian elections. Information, Communication & So-
ciety 23, 6 (2020), 867–891. https://doi.org/10.1080/1369118X.2020.1739732
arXiv:https://doi.org/10.1080/1369118X.2020.1739732

[8] John S. Hollywood, Michael J. D. Vermeer, Dulani Woods, Sean E. Goodison, and
Brian A. Jackson. 2018. Using Social Media and Social Network Analysis in Law
Enforcement: Creating a Research Agenda, Including Business Cases, Protections,
and Technology Needs. RAND Corporation, Santa Monica, CA. https://doi.org/
10.7249/RR2301

[9] Meta Platforms Inc. 2004. Facebook. https://www.facebook.com. Accessed:
2022-07-29.

[10] Twitter Inc. 2006. Twitter. https://www.twitter.com. Accessed: 2022-07-29.
[11] Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann, and Mathieu Bastian.

2014. ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network
Visualization Designed for the Gephi Software. PLOS ONE 9, 6 (06 2014), 1–12.
https://doi.org/10.1371/journal.pone.0098679

[12] Fred Morstatter, Yunqiu Shao, Aram Galstyan, and Shanika Karunasekera. 2018.
From Alt-Right to Alt-Rechts: Twitter Analysis of the 2017 German Federal
Election. (04 2018), 621–628. https://doi.org/10.1145/3184558.3188733

[13] MehwishNasim, AndrewNguyen, Nick Lothian, Robert Cope, and LewisMitchell.
2018. Real-Time Detection of Content Polluters in Partially Observable Twit-
ter Networks. In Companion Proceedings of the The Web Conference 2018 (Lyon,
France). International World Wide Web Conferences Steering Committee, Re-
public and Canton of Geneva, CHE, 1331–1339. https://doi.org/10.1145/3184558.
3191574

[14] International Association of Crime Analysts. 2018. Social Network Analysis for
Law Enforcement [White paper]. (2018).

[15] Robert Sedgewick. 2001. Algorithms in C, Part 5: Graph Algorithms, Third Edition
(third ed.). Addison-Wesley Professional.

[16] Nguyen Vo, Kyumin Lee, Cheng Cao, Thanh Tran, and Hongkyu Choi. 2017.
Revealing and DetectingMalicious Retweeter Groups (ASONAM ’17). Association
for Computing Machinery, New York, NY, USA, 363–368. https://doi.org/10.
1145/3110025.3110068

[17] Tingmin Wu, Sheng Wen, Yang Xiang, and Wanlei Zhou. 2018. Twitter spam
detection: Survey of new approaches and comparative study. Computers Security
76 (2018), 265–284. https://doi.org/10.1016/j.cose.2017.11.013

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

20

Empirical evaluation of sequential, parallel and distributed
implementations of k-means clustering

Andrej Perković
89201045@student.upr.si

Faculty of Mathematics, Natural
Sciences and Information Technologies

University of Primorska
Glagoljška ulica 8

SI-6000 Koper, Slovenia

Aleksandar Tošić
aleksandar.tosic@upr.si

Faculty of Mathematics, Natural
Sciences and Information Technologies

University of Primorska
Glagoljška ulica 8

SI-6000 Koper, Slovenia

ABSTRACT
In this paper we present a sequential, parallel and distributed im-
plementation of the infamous k-means clustering algorithm. We
perform extensive testing of all three implementations on state the
art hardware, and show the performance bene�ts of paralelliza-
tion. The research was inspired by a use-case of reverse logistics
optimisation of wood in Germany, which translates to a facility
location problem. K-means is an heuristic approach that renders
surprisingly good results compared to mathematical modelling ap-
proaches, which are usually not feasible in large inputs as they
belong to the class of NP-hard problems.

KEYWORDS
k-means, Clustering, MPI, Parallel computing

1 INTRODUCTION
The concept of reusing waste wood is not a new concept [4]. Over
the years, the concept of reusing or recycling waste wood has
been gaining increasing attention both from academia and industry
participates. The potential of reusing waste wood has multiple
bene�ts such as positive environmental e�ects as less trees need
to be cut in order to meet the demand of raw materials. Currently,
in most countries waste wood is collected but rarely sorted or
decontaminated. Both of these processes are required before reusing
waste wood. The process of sorting is important to �lter out wood
not suitable for reuse, which is mainly due to size constraints, and
type of wood (hardwood/softwood). The decontamination process
involves some mechanical cutting and grinding of parts of the
suitable waste wood to remove unwanted objects (nails, screws,
etc..) and chemical compounds such as adhesives. However, both of
these processes are inherently costly, and the capital and operational
expenses need to be justi�ed by the added value obtained by reusing
waste wood as oppose to buying new raw material [1]. To achieve
this goal, legislation must both subsidise the transition to circular
economy and at the same time impose restrictions or taxes on
excessive ⇠$2 emissions [14].

Due to lack of investment and motivation by market participants,
most of the waste wood is burned for energy and put into land-
�ll where burning is not an option due to heavy contamination.
Sometimes, this is done by accumulation sites directly.

For a successful implementation, new facilities for sorting and
decontamination must be built. These facilities would then o�er
recycled wood to the market to fund their operational expenditure.

The placement of such facilities is a logistics optimisation problem
commonly known as the F������� L������� P������ (FLP). Ex-
isting research is mostly focused on mathematical modeling and
linear programming to �nd the near optimal positioning of facilities
considering all constraints [1, 3]. However, due to the computa-
tional complexity of the problem, such solutions are not scalable
for large logistic networks such as the entire EU zone.

K-means clustering has been heavily explored as a heuristic
approach to solving large problems where linear programming
solvers become infeasible [9]. Clustering is a simple and powerful
principle for making sense of large swats of data. It is becoming
more and more important in today’s data-intensive and data-driven
society [7]. -means clustering is a rudimentary algorithm for
achieving this goal. It has been one of the researchers’ favorite,
with a plethora of variations and tweaks [16]. It is widely studied,
with the most notable work coming from Lloyd [10], Forgey [5],
Friedman and Rubin [6] and MacQueen [11].

The crux of the algorithm are it’s two steps - the 0BB86=<4=C
(binding) BC4? and the update step. In the former, we assign each
point to the "closest" cluster centroid. In the latter, we recalculate the
centroid of the cluster. De�nition of closeness depends on the choice
of the algorithm. The algorithm stops once there are no changes
in the binding. Recently, clustering has been used to improve run-
time of M�����I������ L����� M����� (MILP) to give the solver
a better initial state then random [2].

In this paper we present an open-source parallel and distributed
implementation of the k-means algorithm. We evaluate our imple-
mentation on the aforementioned use case using data obtained from
the statistical o�ce in Germany. Our initial data-set contains 10.000
accumulation sites, which accumulate used wood. The dataset was
prepared by statistically estimating the amount of wood that should
accumulate in an area based on the population density, and average
waste wood created per inhabitant. Both of the aforementioned
statistics were obtained from the statistical o�ce of Germany. Each
site is located using GPS coordinates and distances are computed
using the Cosine-Haversine Formula [13].

2 IMPLEMENTATION
To tackle the problem at hand, we decide to use the weighted :-
means clustering algorithm. It’s di�erent form the classical version
in that it takes into consideration the capacity of the facility, not just
the Euclidean distance. This way the calculation of the centroid of a
cluster is biased towards the larger collection facilities of that cluster,
which re�ects practical needs of placing the treatment facilities

h�ps://doi.org/10.51939/scores22.06

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

21

Andrej Perković and Aleksandar Tošić

Figure 1: An example of the output results using MPI with
10 clusters of 10 000 sites.

closer to places with more signi�cant accumulation of wood. Hence,
we get the coordinates of the new centroid in the following way:

⇠ 9 (G) =

’
G8 2⇠ 9

G8 ·F8

’
G 9 2⇠ 9

F 9

The new ~ coordinate of the centroid is calculated analogously.
In the assignment step, we assign to each data point the clos-

est centroid. The Euclidean distance formula for calculating the
distance is used here. We assign point ?8 to cluster ⇠ 9 if it holds
that:

9 = argmin
;

{
q
(?8 (G) �⇠; (G))2 + (?8 (~) �⇠; (~))2}

For the initialization, we decided to go with the Frogy method
of randomly choosing : points as initial cluster centorids from the
given data set, which is proven to be the best one for the simple
:-means [8].

2.1 Parallel mode
This mode was implemented using the thread pool principle with
the help of Executors class [12]. This allows for dynamic control of
threads, so there is less possibility for human error. Synchronization
was done with the CountDownLatch instances called barrierBind
and barrierUpdate, reinitialized before each assignment and up-
date step, respectively.

For the binding step, each thread gets an approximately equally
sized chunk of Site collection to process. To do this, all threads

Generate
Centroids

MPI.allGatherv()

MPI.scatterv()

MPI.bcast()

Centroid Selection BindingInitialize Sites

Master Workers(n)

Check Stop
 Condition

MPI.gattherv(flags)

MPI.bcast()

MPI.bcast()

Update

MPI.scatterv()

MPI.gatherv()

MPI.scatterv()

(n)

Terminate

Figure 2: An outline of the distributed algorithm’s work�ow
using MPI.

need to know location of current centroids. They can safely share
this since they only read the values in this step. There is no critical
sections here regarding sites, since threads are accessing partitions
of the Site list, i.e. disjoint sets. On the other hand, the parallel
program can get into the race condition in the part of the codewhere
a Site object is appended to a cluster’s list of the given objects. For
this reason, we performed the insertion of sites to appropriate lists
sequentially after the computations are done. One would argue that
the ArrayList.add()method could have been made synchronous,
but there are situations where even this can fail. Moreover, doing
this sequentially has a negligible in�uence on the performance.

In this mode, the stopping condition is returned as the result
value of the function bindCluster(). If it is true, only then do we
enter the block of code that initiates the update step.

For the update step, we call the method updateCentroid(),
which very simply creates a Runnable for each cluster and sends it
to the executor.

2.2 Distributed mode
Thismode is more "independent", or better put, "self-contained" [12].
We implemented it with the MPJ express library [15]. Due to the na-
ture of message passing and MPJ’s underlying implementation in C,
it is not possible to pass complex structures between processes, like
Cluster and Site. We can only natively send the primitive types.
For this reason, we decided to "serialize" the Cluster and Site
arrays. We transform them into double arrays, centroidBuffer,
represented with orange circles in Figure 2, and siteBuffer, repre-
sented with blue circles, respectively. For Cluster transformation,
we extract the 83 , ;0C8CD34 and ;>=68CD34 of each instance. Hence,
for cluster 8 , we have its 83 at position 38 , its ;0C8CD34 at position 38+1
and its ;>=68CD34 at position 38+2 in centroidBuffer. Similarly for

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

22

Empirical evaluation of sequential, parallel and distributed implementations of k-means clustering

the sites, we store the 83 at position 58 , ;0C8CD34 at 58 + 1, ;>=68CD34
at 58 + 2,F486⌘C at 58 + 3 and 2;DBC4A�⇡ at 58 + 4 in the siteBuffer
for the site 8 . Process 0 acts as the master and completes the setup,
that is the transformation into double arrays. After that, we start
looping. Processes loop as long as the stopping condition is not sat-
is�ed. To check this, there is a separate bu�er for �ags, represented
with red and green circles in Figure 2. Each process gets a �ag with
the help of the Scatter function to signalize whether it registered
a change in its binding step.

Since the �rst step in the algorithm is assignment, the coordinator
�rst broadcasts centroidBuffer and then scatters the siteBuffer.
We used Scatterv for the latter, since the number of sites need not
be divisible with the number of processes running.

After this, the change �ags are returned to the coordinator. It
decides whether the stopping condition has been reached and broad-
casts that to the workers, which is represented with the Check Stop
Condition box on the Figure. Based on that, we either terminate the
calculations or proceed to the update step.

For the update step, we decided to implement it in the way that
all the processes loop through the entire siteBuffer, but only
perform calculations on instances whose 2;DBC4A�⇡ corresponds to
the cluster centroid instance the given process is assigned. For this
reason, we used the Allgatherv on the siteBuffer right after the
assignment step, but then we used Scatterv on centroidBuffer
to assign approximately equal number of clusters to each process.

3 RESULTS
To evaluate our implementation, all three versions were imple-
mented and tested for performance. All tests were performed on
the same hardware namely, two AMD Epyc CPU’s with 64 compute
cores each, 512GB of RAM running Linux. To test the performance
we conduct two separate tests with 20 workers for the concurrent
versions. Firstly, we test the impact the number of sites has on
performance by �xing the number of centroids and increasing the
number of sites. Secondly, we test the impact centroids have on
performance by �xing the number of sites.

In Figure 3 we show the scalability of all three implementations.
As expected, we observe a reduction in run-time in both parallel
and distributed over the serial implementation. In Figure 3, we can
see that the communication overhead in distributed computation
pays o� only for the heavier half of the test cases. In general, shared
memory should perform much faster then bu�ered IO used by the
loopback interface.

Figure 4 shows the impact of centroids on performance. As ex-
pected, the sequential version scales linearly, while both parallel
and distributed see a marginal hit on performance.

4 CONCLUSIONS AND FUTUREWORK
What we did expect is for the parallel and the distributed to perform
much better than the sequential. But what was unexpected is the
di�erence between MPI’s performance in Figure 3 and 4. It is almost
on par with the performance of the parallel version for the case of
�xed number of sites, yet far from it in the case of �xed number
of centroids. We attribute this to caching. Array of sites is much
bigger than the latter, so having them �xed could be the reason for
the performance kick.

0

25000

50000

75000

0 250000 500000 750000 1000000
Points

R
un

tim
e

(m
s) Version

distributed

parallel

sequential

Figure 3: Performance evaluation of all three implementa-
tions. The results were obtained by increasing the number of
points for each test while keeping the number of centroids
at 100

0

50000

100000

150000

200000

0 2500 5000 7500 10000
Centroids

R
un

tim
e

(m
s) Version

distributed

parallel

sequential

Figure 4: Performance evaluation of all three implementa-
tions. The results were obtained by increasing the number of
centroids for each test while keeping the number of points
at 100.000,00

How di�erent caching strategies and the Cluster Con�guration
of the distributed part, better re�ecting the real-world performance
of the aforementioned computing, in�uence on the comparisons
made in this paper; additionally, pushing the boundary of the test
data size further, beyond what can �t in a single computer’s or
server’s memory, and how does that in�uence the performance of
the two would be the subject of our future work.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the European Commission
for funding the InnoRenew CoE project (H2020 Grant Agreement
#739574) and the PHArA-ON project (H2020 Grant Agreement

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

23

Andrej Perković and Aleksandar Tošić

#857188) and the Republic of Slovenia (Investment funding of the
Republic of Slovenia and the European Union of the European
Regional Development Fund) as well as the Slovenian Research
Agency (ARRS) for supporting project number J2-2504.

REFERENCES
[1] Michael David Burnard, Črtomir Tavzes, Aleksandar Tošić, Andrej Brodnik, and

Andreja Kutnar. 2015. The role of reverse logistics in recycling of wood products.
In Environmental implications of recycling and recycled products. Singapore :
Springer, cop. 2015, 1–30.

[2] Jean-Thomas Camino, Christian Artigues, Laurent Houssin, and Stéphane Mour-
gues. 2021. MILP formulation improvement with k-means clustering for the
beam layout optimization in multibeam satellite systems. Computers & Industrial
Engineering 158 (2021), 107228.

[3] Péter Egri, Balázs Dávid, Tamás Kis, and Miklós Krész. 2021. Robust facility
location in reverse logistics. Annals of Operations Research (2021), 1–26.

[4] Bob Falk et al. 1997. Opportunities for the wood waste resource. Forest Products
Journal 47, 6 (1997), 17–22.

[5] Edward W Forgy. 1965. Cluster analysis of multivariate data: e�ciency versus
interpretability of classi�cations. biometrics 21 (1965), 768–769.

[6] Herman P Friedman and Jerrold Rubin. 1967. On some invariant criteria for
grouping data. J. Amer. Statist. Assoc. 62, 320 (1967), 1159–1178.

[7] Attri Ghosal, Arunima Nandy, Amit Kumar Das, Saptarsi Goswami, and Mri-
tyunjoy Panday. 2020. A short review on di�erent clustering techniques and

their applications. Emerging technology in modelling and graphics (2020), 69–83.
[8] Greg Hamerly and Charles Elkan. 2002. Alternatives to the k-means algorithm

that �nd better clusterings. In Proceedings of the eleventh international conference
on Information and knowledge management. 600–607.

[9] Ke Liao and Diansheng Guo. 2008. A clustering-based approach to the capacitated
facility location problem 1. Transactions in GIS 12, 3 (2008), 323–339.

[10] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[11] James McQueen. 1967. Some methods for classi�cation and analysis of multivari-
ate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, 1967. 281–297.

[12] Andrej Perkovic. 2022. K Means Clustering. https://github.com/AndrejPer/k_
means_clustering

[13] C Carl Robusto. 1957. The cosine-haversine formula. The American Mathematical
Monthly 64, 1 (1957), 38–40.

[14] Erwin M Schau, Črtomir Tavzes, Igor Gavrić, Iztok Šušteršič, Eva Prelovšek
Niemelä, Balázs Dávid, Jaka Gašper Pečnik, and David DeVallance. 2022. Envi-
ronmental and economic assessment of using wood to meet Paris Agreement
greenhouse gas emission reductions in Slovenia. In E3S Web of Conferences,
Vol. 349. EDP Sciences, 03005.

[15] Aamir Sha�, Bryan Carpenter, and Mark Baker. 2009. Nested parallelism for
multi-core HPC systems using Java. J. Parallel Distributed Comput. 69, 6 (2009),
532–545. https://doi.org/10.1016/j.jpdc.2009.02.006

[16] JunjieWu. 2012. Advances in K-means clustering: a data mining thinking. Springer
Science & Business Media.

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

24

Exact Exponential Algorithms for the Center Closing Problem
Samo Metličar

samo.metlicar@hotmail.com
Faculty of Computer and
Information Science,

University of Ljubljana
Večna pot 113

SI-1000 Ljubljana, Slovenia

Jurij Mihelič
jurij.mihelic@fri.uni-lj.si
Faculty of Computer and
Information Science,

University of Ljubljana
Večna pot 113

SI-1000 Ljubljana, Slovenia

ABSTRACT
In this paper, we focus on the center closing problem which is
similar to the well-known :-center problem. Both problems are
de�ned on a network with the goal of optimizing the worst-case
service time for the clients, but with the di�erence that in the
center closing problem several existing centers are closed in order
to optimize total cost of operation. First, we show theNP-hardness
of the problem. Afterwards, we describe several exact exponential
algorithms for solving the problem. Finally, experimentally evaluate
these algorithm on two test scenarios.

KEYWORDS
center closing problem, exact algorithm, combinatorial optimiza-
tion, experimental evaluation, set cover

1 INTRODUCTION
Facility location problems deal with the optimality of the placement
of objects into space. Its roots stretch at least back to the 17th cen-
tury in the form of Fermat’s problem [5] and it has since branched
out signi�cantly. In this paper, we discuss one such problem – the
center closing problem. We de�ne it and its main properties and
propose several exact algorithms for solving it. Those are also im-
plemented and tested using di�erent benchmarks.

The problem deals with closing a set number of centers (e.g. post
o�ces) that o�er some service to consumers (e.g. towns) and is
represented by a network (e.g. road network).

A lot of other prominent facility location problems can also be
found in the literature. One such example is the:-suppliers problem,
analyzed by Hochbaum and Shmoys [6]. A similar problem where
the metric is limited to the !2 space is examined by the authors
of [11]. There are also more complex variations of the problem
where objects are more dynamic and can move or change over
time [7, 8]. Such problems are often solved with integer linear
programs instead of algorithmically.

2 PRELIMINARIES
We begin by introducing basic concepts used in the paper. The
center closing problem �rst requires a network, which we de�ne
as a graph with weighted edges. For each pair of nodes D and E the
length of the shortest path between them is denoted by 3 (D, E). For
each node E in the network and an arbitrary bound ⌫ we also de�ne
its bounded open neighbourhood #⌫ (E) as a set of nodes connected
to E by a path of length at most ⌫, excluding E itself. Finally, let (
be a set. We say that the family of sets P forms a partition of set (
if the following statements hold:

• ; 8 P,
•

–
�2P � = (in

• 8�,⌫ 2 P : � < ⌫ =) � \ ⌫ = ;.
From this the formal de�nition of the problem can follow.

De�nition 2.1 (Center closing problem). Let ⌧ = (+ , ⇢) be a com-
plete undirected network, sets of centers (and consumers⇠ form a
partition of + , ⌘ : ⇠ ! R+0 be a non-negative weight function and
: be a positive integer not greater than |(|. For every subset ' ✓ (
de�ne the cost as

cost(') = max
22⇠

min
B2(\'

⌘(2)3 (2, B).

The problem is to �nd such a set ' ✓ (, where |' | � : , which
minimizes the cost.

The problem can also be presented in the decision version by
adding a bound ⌫ and asking if there exists a solution of cost at
most ⌫.

3 HARDNESS OF THE PROBLEM
Because of the similarity to the :-center [10] problem and other
facility location problems we assume that it is also NP-hard. We
prove the assumption by reducing the :-center problem to the
center closing problem in polynomial time. Let ⌧ 0 = (+ , ⇢) be a
complete undirected network and :0 be a non-negative integer not
greater than |+ |. The :-center problem is to �nd a set % ✓ + , where
|% | :0, which minimizes the cost

cost(%) = max
E2+

min
?2%

3 (E, ?) .

We reduce the :-center problem to the center closing problem as
follows:

• network⌧ contains 2 copies of each node in+ and sets the
weight of the edge connecting them to 0. The rest of the
edges are copied from ⇢,

• (= ⇠ = + , ie., the set of nodes represents both the set of
centers and the set of consumers,

• ⌘ = 1⇠ , ie., all consumer weights are 1, and
• : = |(| � :0, ie., the number of closed centers as opposed

to the number of opened centers.

L���� 3.1. Set %⇤ solves the :-center problem if and only if set
'⇤ = (\ %⇤ solves the center closing problem.

P����. Let us denote by cost1 and cost2 the cost functions of the
:-center problem and the center closing problem. Let % be some (not
necesserily optimal) solution to the :-center problem and ' = (\ % .

h�ps://doi.org/10.51939/scores22.07

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

25

Samo Metličar and Jurij Mihelič

Then it holds that |% | :0 and |' | � : and ' is thus also a solution
to the center closing problem.1 We now observe the cost functions:

cost2 (') = max
22+

min
B2+ \'

1+ (2)3 (2, B)

= max
E2+

min
?2%

3 (E, ?)

= cost1 (%).

Lets say there exists '0 < '⇤ s.t. cost2 ('0) < cost2 ('⇤). Since
the costs are equivalent it follows that cost1 (+ \ '0) < cost1 (%⇤).
Therefore %⇤ does not solve the :-center problem – a contradiction.

⇤

We have shown how to reduce the :-center problem to the center
closing problem in polynomial time. We have also shown that the
cost functions match in both problems, therefore the decision ver-
sions of them can use the same boundary and will return equivalent
results. From [9] it then follows that since the decision version of
the :-center problem is NP-complete, this must also hold for the
decision version of the center closing problem. Further it follows
from [12] that since the decision version of the center closing prob-
lem is NP-complete, its optimization version must be NP-hard.

4 EXACT EXPONENTIAL ALGORITHMS
4.1 Brute-force Enumeration
The most straightforward approach to solving the problem is gen-
erating all subsets ' of set (. Let = = |⇠ |,< = |(|, and : = |' |, then
there are

�<
:

�
possible subsets in total. Each has to be evaluated

resulting in the time complexity): (=,<) =
�<
:

�
(< � :)=. For a

�xed : this results in a polynomial time of O(<:+1=), however in
the worst case scenario where : = <

2 the time complexity is ex-
ponential, namely O(2<

p
<=) (derived using the Stirling formula).

This algorithm will later be referred to with the abbreviation bf.

4.2 Backtracking
Here, we represent the search space of the problem with a rooted
binary tree, where each inner node represents a set of closed centers
and outgoing connections represent available actions – the cen-
ter can be closed (the left branch) or kept open (the right branch).
Leaf nodes represent solutions and are, thus, evaluated. The algo-
rithm, denoted with bt, traverses the tree using depth-�rst search
introducing two pruning methods:

• if there are not enough centers left in the branch to ful�ll
the minimum required number of closed centers, the branch
is pruned;

• if there are already enough centers closed, the branch be-
low the current node is pruned. The currently visited node
becomes a leaf.

The backtracking approach was also implemented in the algo-
rithm, denoted with btd, that solves the decision version of the
problem allowing for an additional pruning method. In particular,
by tracking intermediate costs at each node, we can take advantage
of the fact that those costs are non-decreasing and prune the branch
if the intermediate cost exceeds the boundary ⌫.

1This also holds in reverse where ' is a solution to the center closing problem and
% = + \ '.

4.3 Branch and Bound
We upgrade the backtracking algorithm with the branch and bound
strategy, denoted with bnb. During the branching part of the al-
gorithm, a priority queue is maintained determining the order in
which centers are processed. On each step, the intermediate solu-
tion is evaluated enabling the use of the bound part of the strategy.
It takes advantage of the fact that the cost is non-decreasing with
respect to closing additional centers. Therefore, if the intermediate
evaluation ever exceeds the current lowest cost found, the whole
branch can be pruned.

The algorithm starts without an upper bound, meaning it might
not prune much until a decent upper bound is determined. To
address this, the algorithm �rst solves the problem with an approx-
imate algorithm and uses that solution as the starting bound. This
alteration of the algorithm will be abbreviated with bnb+.

4.4 Reduction to the Set Cover Problem
Here, we develop an algorithm based on the reduction to the de-
cision version of the set cover problem, which is de�ned as fol-
lows. Let * be a universal set, S be a family of subsets of * , and
✓ 2 N a boundary. The question is whether there exists such a
family M ✓ S of size |M| ✓ , that covers the universal set * ,
i.e.,

–
"2M " = * . We reduce the decision version of the center

closing problem to the set cover problem as follows:
• * = ⇠ , i.e., the set of suppliers represents the universal set,
• S = {#⌫ (B) | B 2 (}, i.e., the family consists of sets of neigh-

bors of the existing centers, and
• ✓ =< � : , i.e., the bound for the set cover problem.

L���� 4.1. Family M
⇤
✓ S solves the set cover problem if and

only if subset '⇤ ✓ (, where {#⌫ (B) | B 2 (\ '⇤} = M
⇤, solves the

center closing problem.

P����. ()) Let (⇤ = {B 2 (| #⌫ (B) 2M⇤}. Clearly, (⇤ ✓ (
and by the de�nition of the set cover neighborhoods of selected
centers cover the whole set ⇠ , meaning the cost is at most ⌫. From
'⇤ = (\ (⇤ it also follows that |'⇤ | � : and thus '⇤ is a valid
solution.

(() Let (⇤ = (\ '⇤. For every 2 2 ⇠ it holds that there exists
a center B 2 (⇤ s.t. ⌘(2)3 (2, B) ⌫, meaning 2 2 #⌫ (B). Because
|(⇤ | < � : = ✓ , the family M

⇤ = {#⌫ (B) | B 2 (⇤} is a valid
solution. ⇤

Now, we introduce the set cover algorithm, see Algorithm 1,
that is derived from [13] where its correctness as well as its time
complexity of order O(1,5169<) is shown.

The algorithm can easily be expanded to solve the optimization
version of the problem. To do this, we take into account that the
cost of the center closing problem must always be equal to the cost
between some consumer and center. All unique costs are therefore
ordered allowing for bisection in the ordered list to be used to �nd
the lowest cost for which the solution of the problem exists.

5 EXPERIMENTAL EVALUATION
5.1 Experimental Setting
Algorithms were implemented in C programming language and
compiled using gcc 10.2.0with �ags -O3 -std=gnu17. Tests were

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

26

Exact Exponential Algorithms for the Center Closing Problem

Algorithm 1 Set Cover

Input: Universal set* , family S and bound ✓
Output: YES or NO

procedure S��C����(* , S, ✓)
if ✓ = 0 then

if S = ; and* = ; then return YES
else return NO
end if

end if
(argmax {|(0 | | (0 2 S}.
if 9D 2 * s.t. it is contained in exactly one set ' 2 S then

return S��C����(* \ ', {'0 \ ' | '0 2 S \ {'}}, ✓ � 1)
else if 9&,' 2 S s.t. ' ✓ & then

return S��C����(* , S \ {'}, ✓)
else if |(| 2 then

Let C be the set cover computed in polynomial time by
using maximum matching

if |C| ✓ then return YES
else return NO
end if

end if
return S��C����(* \ (, {(0 \ (| (0 2 S \ {(}}, ✓ � 1) or

S��C����(* ,S \ {(}, ✓)
end procedure

run on a computer running Windows 10 on an AMD Ryzen 5 2600x

cpu with a frequency of 3,6GHz. It has 6 cores with a total of 576 KB
L1 cache, 3MB of L2 cache and 16MB of L3 cache. The system has
16GB of available DDR4 RAMwith a frequency of 2966MHz. In the
next two sections, we present results of the experimental evaluation
on two di�erent test scenarios.

5.2 Scale-free Graphs
Here, we consider a test scenario consisting of scale-free networks
which are common in the real world. Here, the Barabási–Albert
model [1] is used to generate random base graphs. The< nodes with
the highest degree are selected as the centers while the rest become
consumers. Distances between consumers and centers are set as
the length of the shortest path between the two. Additionally, the
consumer weight is determined by its degree. Generating random
networks allowed us to isolate input parameters and test them
independently of each other.

First, we focus on the the number of closed centers : in order to
determine its e�ect on the time complexity for each algorithm. For
this, 100 random scale-free networks were generated with = = 100
and< = 20. The results, shown in Figure 1, show that most algo-
rithms are behaving similarly to what we derived in Section 4.1,
meaning they are the slowest around : = <

2 . The only exception
to this observation is the sc algorithm which performs the best for
high values of : and the worst for low values.

Next, we focus on the total number of centers<. For this bench-
mark 100 networks with = = 100 consumers were generated for
each value of<. Algorithms were closing : = 3 centers and the re-
sults can be seen in Figure 2. Observe that several algorithms, such
as bnb, are outperforming the set cover algorithm quite drastically.

Figure 1: Average execution times for the scale-free networks
using exact algorithms in relation to : .

This coincides with the observation from the previous test, where
set cover algorithm performs poorly for low values of : while the
rest of the algorithms exceed in that range.

Figure 2: Average execution times for the scale-free networks
with = = 100 consumers using exact algorithms for parameter
: = 3 in relation to<.

Finally, the number of consumers = was isolated. 100 networks
were generated for each value of =, all with< = 20 centers. The
number of closed centers was set to : = 3. The results, shown
in �gure 3, indicate that the impact of parameter = on the time
complexity is linear for all observed algorithms. This once again
coincides with the calculations from 4.1.

5.3 Pmed Benchmark Library
One of the widely used benchmarking libraries to test algorithms
for solving facility location problems is OR-Library [3]. It contains
the set, denoted with pmed, of 40 test cases [2] for the ?-median
problem [4] which also became the standard for testing the algo-
rithms for :-center problem [10], from which the center closing
problem originates.

Test cases contain networks with nodes counting from 100 to
900. Graphs were originally generated by adding |+ |

2
/50 edges at

random with discrete uniformal distribution of lengths from the
interval [1, 100].

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

27

Samo Metličar and Jurij Mihelič

Figure 3: Average execution times for the scale-free networks
with< = 20 and : = 3 using exact algorithms in relation to =.

Algorithms were tested by reducing the :-center problem to the
center closing problem. In turn this meant that ⇠ = (= + and the
high number of centers caused most algorithms to be too slow. This
was futher exagarated by the fact that tests required a high amount
of those to be closed. This meant that only the set cover algorithm
was able to solve some of the tests, which also then serve as an
additional test of correctness of the algorithm, since the solutions
to all 40 test cases are publicly available.

The algorithm was given 30 minutes for each test case to �nd
the solution. Solve times as well as the solutions can be seen in
Table 1. We observe that for large< solutions are rare as expected
from Figure 2 as well as from the theoretical time complexity.

=,< : opt time # =,< : opt time

1 100 95 127 426 21 500 495 40
2 100 90 98 387 22 500 490 38
3 100 90 93 2503 23 500 450 22
4 100 80 74 18 24 500 400 15 948
5 100 67 48 22 25 500 333 11 1351
6 200 195 84 26695 26 600 595 38
7 200 190 64 43614 27 600 590 32
8 200 180 55 14321 28 600 540 18
9 200 160 37 97 29 600 480 13 1377
10 200 133 20 132 30 600 400 9 1857
11 300 295 59 2365 31 700 695 30
12 300 290 51 563473 32 700 690 29
13 300 270 36 4930 33 700 630 15
14 300 240 26 291 34 700 560 11 2923
15 300 200 18 297 35 800 795 30
16 400 395 47 644 36 800 790 27
17 400 390 39 37 800 720 15
18 400 360 28 38 900 895 29 1707288
19 400 320 18 11966 39 900 890 23
20 400 267 13 748 40 900 810 13

Table 1: Table showing case parameters, optimal solution and
solving time in ms for the set cover algorithm on test cases
pmed from OR-Library.

6 CONCLUSIONS
In this paper we have presented the center closing problem. We
proved it is NP-hard and presented several exact algorithms with
di�erent approaches to solving the problem. We showed how to
reduce a well known :-center problem to center closing problem
as well as how to reduce the latter to the set cover problem. Finally,
in the paper we have shown the results of experimental evaluation
of discussed algorithms tested on di�erent types of networks.

REFERENCES
[1] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex

networks. Rev. Mod. Phys. 74 (Jan 2002), 47–97. Issue 1. https://doi.org/10.48550/
arXiv.cond-mat/0106096

[2] J.E. Beasley. 1985. A note on solving large p-median problems. European Journal
of Operational Research 21, 2 (1985), 270–273. https://doi.org/10.1016/0377-
2217(85)90040-2

[3] J.E. Beasley. 1990. OR-LIBRARY. http://people.brunel.ac.uk/~mastjjb/jeb/info.
html

[4] Mark S. Daskin and Kayse Lee Maass. 2015. The p-Median Problem. Springer
International Publishing, Cham, 21–45. https://doi.org/10.1007/978-3-319-13111-
5_2

[5] Heinrich Dörrie. 1965. 100 Great Problems of Elementary Mathematics: Their
History and Solution. Dover Publications, Inc., 361–363.

[6] Dorit S. Hochbaum and David B. Shmoys. 1986. A Uni�ed Approach to Approxi-
mation Algorithms for Bottleneck Problems. J. ACM 33, 3 (may 1986), 533–550.
https://doi.org/10.1145/5925.5933

[7] Sanjay Dominik Jena, Jean-François Cordeau, and Bernard Gendron. 2015. Mod-
eling and solving a logging camp location problem. Annals of Operations Research
232 (2015), 151–177. https://doi.org/10.1007/s10479-012-1278-z

[8] Sanjay Dominik Jena, Jean-François Cordeau, and Bernard Gendron. 2016. Solv-
ing a dynamic facility location problem with partial closing and reopening.
Computers & Operations Research 67 (2016), 143–154. https://doi.org/10.1016/j.
cor.2015.10.011

[9] D. S. Johnson M. R. Garey. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness (�rst edition ed.). W. H. Freeman. https://doi.org/10.
1137/1024022

[10] Jurij Mihelič and Borut Robic. 2005. Solving the k-center Problem E�ciently
with a Dominating Set Algorithm. CIT 13 (09 2005), 225–234. https://doi.org/10.
2498/cit.2005.03.05

[11] Viswanath Nagarajan, Baruch Schieber, and Hadas Shachnai. 2013. The Euclidean
k-Supplier Problem. In Integer Programming and Combinatorial Optimization,
Michel Goemans and José Correa (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 290–301.

[12] B. Robič. 2009. Aproksimacijski algoritmi. Fakulteta za računalništvo in infor-
matiko.

[13] Johan M.M. van Rooij and Hans L. Bodlaender. 2011. Exact algorithms for
dominating set. Discrete Applied Mathematics 159, 17 (2011), 2147–2164. https:
//doi.org/10.1016/j.dam.2011.07.001

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

28

Some observations on the Column-Row game
Ina Bašić

89181003@student.upr.si
UP FAMNIT

Koper, Slovenia

Eric Gottlieb
gottlieb@rhodes.edu

Rhodes College
Memphis, Tennessee, U.S.A.

Matjaž Krnc
matjaz.krnc@upr.si

UP FAMNIT
Koper, Slovenia

ABSTRACT
In this paper we study a new combinatorial game played on Young
diagrams, called Column-Row. We devise a dynamic-programming
algorithm for computing winning positions, or, more generally,
Sprague-Grundy values. In turn, we identify winning strategies for
several in�nite families of starting positions. We prove those results
formally, and conclude with a conjecture arising from this work.

KEYWORDS
Sprague-Grundy theory, Young diagrams, Combinatorial games,
Dynamic programming

1 INTRODUCTION
Combinatorial game theory is a large and growing �eld that in-
cludes in its scope a wide range of game types, generally focusing
on two-player games in which both players have perfect infor-
mation and there are no moves of chance. The main question in
combinatorial game theory is, given some position and optimal play,
which player has a winning strategy? Sprague [9] and Grundy [6]
introduced a method of quantifying game positions for normal play
impartial games. These Sprague-Grundy values are a generalization
of winning and losing positions. Furthermore, the Sprague-Grundy
values are instrumental in the theory of disjunctive sums of im-
partial games; see [1, 3, 6, 8–10]. This is why recent research on
impartial games is predominantly focused on the Sprague-Grundy
values rather than on winning/losing positions. A more detailed
introduction to combinatorial game theory, including impartial
games, can be found in [2, 3, 8].

In this paper we study winning/losing positions (and more gen-
erally, Sprague-Grundy values), of a new game called Column-Row.
We proceed with some preliminary de�nitions concerning parti-
tions, and Young diagrams. In Section 2, we describe the game and
the methods used to verify the results, which we proceed to present
in Sections 3 to 5. Each of these sections presents the Sprague-
Grundy values of the Column-Row game on a given partition family.
We conclude the paper by describing some open problems and
discussing their di�culty.

1.1 Preliminaries
We begin by de�ning some important concepts. A winning position,
N -position, is a state in which the next player can guarantee a win.
A losing position, P-position, is a state from which the previous
player can guarantee a win. Let (be a set of integers. Thenminimal
excluded value of (, denoted bymex((), is the smallest integerwhich
is not in (. Let ⌧ be a short impartial combinatorial game under
normal play. We say e⌧ is a subposition of ⌧ if it can be obtained
as a result of a single move from ⌧ . Let ⌧ have : subpositions,
⌧1, . . . ,⌧: . Then, we calculate the Sprague-Grundy value G of ⌧

recursively as mex({G1, . . . , G: }), where G8 represents the Sprague-
Grundy value of ⌧8 , and write (⌧ (⌧) = G . The Sprague-Grundy
value of an empty partition is mex(;) = 0. This de�nition allows
for computing Sprague-Grundy values recursively and represents
an essential part of an algorithm presented in Section 2. A Young

Figure 1: A Young diagram _ and its conjugate _0.

Diagram is a diagram representing a partition _ of a non-negative
integer =, = = G1 + · · · + G: where G1 � · · · � G: � 0 is a sequence
of non-decreasing integers, as a left-justi�ed array of boxes, such
that row 8 has G8 boxes. We write _ = (G1, . . . , G:). We make no
distinction between a partition _ and its Young diagram. The only
partition of 0 is the empty sum, denoted by ;. The conjugate, _0 of _
is a partition _0 = (G 01, . . . , G 0G1) where G 08 is the largest integer such
that GG 08 � 8 . An example of a Young diagram and its corresponding
conjugate can be found on Fig. 1. A subpartition _[8, 9] of _ rooted

Figure 2: A subpartition _[2, 2] (in blue) of a Young diagram
_.

at the box (8, 9) is a partition (G8 � 9, G8+1 � 9, . . . , G1 � 9), as
shown in Fig. 2. We proceed to de�ne families of partitions. All
partition parameters are strictly positive. A rectangle partition '0,1
is a partition of the form (10), with 0 rows and1 columns. A gamma
partition �0,1 is a partition of the form (1, 10�1), with 0 rows and 1
columns, such that the �rst row has 1 boxes and every subsequent

h�ps://doi.org/10.51939/scores22.08

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

29

Ina Bašić, Eric Go�lieb, and Matjaž Krnc

row consists of only one box. An almost gamma partition �1,3
0,1

, is
a gamma partition such that column 0 is repeated 3 � 1 times. A
staircase partition (= is a partition of the form (=,= � 1, . . . , 1). A
quadrated partition is a partition of = of the form (G<1

1 , . . . , G<:
:

)
where GC appears<C times, such that

Õ:
C=1 GC ·<C = = and all GC ,<C

are even. The examples of those partitions can be found on Fig. 3.
For the family of rectangles, the allowable moves correspond to

Figure 3: A staircase parition - (5, rectangle parititon - '4,2,
gamma parition - �5,3, almost gamma parition - �1,35,4 , and a
quadrated partition with = = 12.

a simpli�ed variant of the Column-Row game called LCTR (see
[4, 5, 7]). In particular, the results by Gottlieb et. al [5] imply the
following results for the Column-Row game.

L���� 1.1. For positive integers 0 and 1, we have

(⌧ ('0,1) =
8>>><
>>>:

0 if 1 > 1 and 0 > 1 and 0 + 1 is even
2 if 1 2 or 0 2 and 0 + 1 is odd
1 otherwise.

L���� 1.2 (LCTR [5]). Let _ be a partition. Then we have
(1) _0[8, 9] = _[9, 8] 0 and
(2) (⌧ (_0) = (⌧ (_).

2 THE COLUMN-ROW GAME
Column-Row game (CR for short) is an impartial, combinatorial
game played on a Young Diagram. A move in CR consists of remov-
ing any single row or any single column from the diagram. We do
not make the distinction between the CR game and the correspond-
ing Young diagram, thus the notations CR(_) and _ are equivalent.
We denote the row and columnmoves as 8A and 92 , where 8 and 9 are
the indices of the row and column which we remove from the dia-
gram, respectively, and write _

8A���! e_ for a row move and _
92���! e_

for a column move. Refer to Fig. 4 for a visual representation of the
moves of CR.

Figure 4: An example of both types of moves.

2.1 Verifying Sprague-Grundy values by aid of
computer

As a consequence of the de�nition of Sprague-Grundy value of
a game, we can use a computer to verify the results. By utilizing
dynamic programming approach to store the Sprague-Grundy val-
ues of subpositions, this can be done e�ciently. We outline our
approach in Algorithm 1.

1 Function SG (_,D)
Input: Partition _, dictionary D.
Output: SG value of the game CR played on _.

2 if _ 8 D then
3 M ;;
4 for 8-th column of _ do

5 let _
82���! e_ and add (⌧ (e_,D) toM;

6 for 9-th row of _ do

7 let _
8A���! e_ and add (⌧ (e_,D) toM;

8 D[_] mex(M);
9 return D[_];
Algorithm 1: An outline of the code which computes the
Sprague-Grundy value SG(_), for any input partition _. In
the code,D is assumed to be a dictionary of partitions as keys,
stored together with the corresponding Sprague-Grundy val-
ues. D is initially empty.

Algorithm 1 is particularly useful for identifying (most of the
times in�nite) patterns of winning positions. As we will see in the
subsequent sections, those patterns are then proved formally, or
posed as an open conjecture. Without the aid of such an algorithm,
computing Sprague-Grundy values would involve exhaustive case-
analysis even for a single starting position.

3 SPRAGUE-GRUNDY VALUES OF
COLUMN-ROW GAME ON A QUADRATED
PARTITION

In this section, we present a solution to the Column-Row game
on a family of quadrated partitions in terms of traditional N/P-
positions.

L���� 3.1. Let & = (G<1
1 , . . . , G<:

:
) be quadrated, and let ⌧ be a

subposition of & . Then
(1) ⌧ is not quadrated.
(2) There exists a quadrated subposition of ⌧ .
(3) ⌧ is an N -position, & is a P-position.

P����. As a consequence of Lemma 1.2, it is enough to consider

only the row moves of & . Suppose ⌧ is obtained by &
8A���! ⌧

for some 8 . We show each item in turn. Item 1 and Item 2 are an
immediate consequence of the properties of quadrated partitions,
while Item 3 is shown by induction.

(1) Removing a row reduces the number of occurrences<C of
some GC in⌧ . Since & is quadrated,<C � 1 is odd⌧ cannot
be quadrated.

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

30

Some observations on the Column-Row game

(2) Suppose 8 is odd and consider the move ⌧
(8�1)A������! e& . It is

easy to see that e& is quadrated. Similarly, suppose 8 is even.

Then the move⌧
(8+1)A������! e& gives us the desired quadrated

subposition of ⌧ .
(3) We proceed by induction on =. For the base case, we con-

sider = = 0. Notice that the only such partition is ;, which is
quadrated and trivially a P-position. Let & be a quadrated
partition of =, let⌧ be its subposition, and assume the claim
holds for any quadrated partition of : for : < =. By Item 1,
⌧ is not quadrated, and, by Item 2, it has a quadrated subpo-
sition e& , a partition of : < =. By the induction hypothesis,e& is a P-position, and therefore⌧ is anN -position. Conse-
quently, since every subposition of & is an N-position, &
is a P-position.

⇤

4 SPRAGUE-GRUNDY VALUES OF
COLUMN-ROW GAME ON A GAMMA
PARTITION

Recall that a gamma partition �0,1 is a partition of the form (1, 10�1),
with 0 rows and 1 columns, such that the �rst row has 1 boxes and
every subsequent row consists of only one box. In this section we
resolve the Sprague-Grundy values of Column-Row game on any
gamma partition.

T������ 4.1. The Sprague-Grundy value of a gamma partition
�0,1 is given by:

(⌧ (�0,1) =
8>>><
>>>:

(0 + 1) mod 2 + 1 if min(0,1) = 1
0 if 0 and 1 have the same parity
3 otherwise.

P����. We proceed by induction on 0 + 1. Given �0,1 , we have
four possible types of moves and thus, four possibly distinct subpo-
sitions ⌧1, . . . ,⌧4:

⌧1: �0,1
0A���! �0�1,1,

⌧2: �0,1
02���! �1,1�1,

⌧3: �0,1
92 , 9>0�������! �0,1�1,

⌧4: �0,1
8A , 8>0�������! �0�1,1 .

Notice that ⌧3 and ⌧4 are uniquely de�ned. For the base case we
consider �0,1 such that 0 + 1 4. We have two possibilities for 0
and 1, namely, either min(0,1) = 1 or 0 = 1 = 2. In the former case,
the Sprague-Grundy values for �1,3 and �3,1 are given directly by
Lemma 1, since min(0,1) = 1, thus we have

(⌧ (�1,3) = (⌧ (�3,1) = 1 = (3 + 1) mod 2 + 1.

In the latter case, removing the �rst row or the �rst column results
in �1,1, while the other two moves result in subpositions �2,1 and
�1,2 respectively. In both cases, min(0,1) = 1, hence

(⌧ (�1,1) = 1,

while
(⌧ (�2,1) = (⌧ (�1,2) = 2.

Then, the Sprague-Grundy value of �2,2 is given by

(⌧ (�2,2) = mex{1, 2} = 0,

thus the claim holds. Assume now, that the claim holds for �0,1 such
that 0 +1 < : , with : > 4 and consider �0,1 such that 0 +1 = : . We
consider the cases where 0 and 1 are of the same and distinct parity
separately. Firstly, let 0 and 1 have the same parity, and consider
the subpositions

⌧1 = �0�1,1 ⌧2 = �1,1�1 ⌧3 = �0,1�1 ⌧4 = �0�1,1 .

We notice that ⌧1 and ⌧2 have the same Sprague-Grundy value. In
particular, because 0 and 1 have the same parity and min(0,1) = 1,

(⌧ (�0�1,1) = (⌧ (�1,1�1)
= ((0 � 1) + 1) mod 2 + 1
= (1 + (1 � 1)) mod 2 + 1,

that is, the value is 2 if 0 and1 are even and 1 otherwise. Similarly,
since both⌧3 and⌧4 have parameters of distinct parity whose sum
is strictly smaller than : , by the induction hypothesis we have

(⌧ (�0,1�1) = (⌧ (�0�1,1) = 3.

Then, the Sprague-Grundy value of �0,1 where 0 and 1 are of the
same parity is eithermex{2, 3} = 0, if both are even, ormex{1, 3} =
0 if they are odd. Finally, let 0 and 1 be of distinct parity. Conse-
quently, as the parities of 0 � 1 and 1 � 1 are distinct as well, the
Sprague-Grundy values of ⌧1 and ⌧2 cannot be equal, and as they
are given by ((0 � 1) + 1) mod 2 + 1 and (1 + (1 � 1)) mod 2 + 1,
respectively, we are able to reach both a position with Sprague-
Grundy value of 2, and a position with Sprague-Grundy value of 1,
depending on whether 0 or 1 is odd. As for⌧3 and⌧4, since both 0
and 1 � 1 as well as 0 � 1 and 1 have the same parity, the induction
hypothesis gives us

(⌧ (�0�1,1) = (⌧ (�0,1�1) = 0.

Thus, the Sprague-Grundy value of �0,1 where 0 and1 are of distinct
parity is therefore

(⌧ (�0,1) = mex{0, 1, 2} = 3,

as desired. ⇤

5 ALMOST-GAMMA
Recall an almost gamma partition is a partition of form (1,30�1).
An example of such a partition �1,35,4 is shown on Fig. 3. The Sprague-
Grundy values of any almost gamma partition is given by the fol-
lowing theorem:

T������ 5.1. Let �1,3
0,1

be an almost-gamma partition, such that
0 � 4, 1 � 3, 3 � 3 and 3 1. Then

(⌧ (�1,3
0,1

) =

8>>>>><
>>>>>:

0 + 1 (mod 2) if 1 and 3 have the same party;
2 if 0 and 1 have the same parity

distinct from 3 ;
3 otherwise.

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

31

Ina Bašić, Eric Go�lieb, and Matjaž Krnc

6 CONCLUSION
While analyzing and verifying Sprague-Grundy values for certain
partition families is signi�cantly easier with the aid of dynamic
programming, doing so in general is far from trivial. In particu-
lar, depending on the structure of the partition and the resulting
subpositions, the problem could pose a signi�cant computational
challenge. Such is the case with the staircase partition de�ned in
Section 1. The following conjecture is given by running Algorithm 1
on (= for = 2 1, · · · 16

C��������� 1. Let (= be a straircase partition. Then

(⌧ ((=) =
8>>><
>>>:

0 if = is even
1 if = = 5
2 otherwise.

In general, solving a game, like LCTR, see [5, 7] on a staircase
partition is, computationally, a relatively easy task. However, when
it comes to the Column-Row, each staircase partition (= has exactly
= subpositions. Only one of these subpositions is a staircase par-
tition. This signi�cantly limits the usefulness of the algorithm as
the remaining = � 1 positions will have to be calculated with every
increase of =.

ACKNOWLEDGMENTS
This work is supported in part by the Slovenian Research Agency,
bilateral project BI-US/22-24-164.

REFERENCES
[1] E.R. Berlekamp, J.H. Conway, and R.K. Guy. 2001. Winning Ways for Your

Mathematical Plays. Number v. 1. Taylor & Francis. https://books.google.rs/
books?id=_1pl8so-qsIC

[2] E.R. Berlekamp, J.H. Conway, and R.K. Guy. 2004. Winning Ways for Your
Mathematical Plays. Number v. 4. Taylor & Francis.

[3] J.H. Conway. 2000. On Numbers and Games. Taylor & Francis.
[4] Eric Gottlieb, Jelena Ilić, and Matjaž Krnc. 2022. Some results on LCTR, an

impartial game on partitions. (2022). https://doi.org/10.48550/ARXIV.2207.04990
[5] Eric Gottlieb, Matjaž Krnc, and Peter Muršič. 2022. Sprague-Grundy values and

complexity for LCTR. https://doi.org/10.48550/ARXIV.2207.05599
[6] P.M. Grundy. 1939. Mathematics of games. Eureka 2 (1939), 6–8.
[7] Jelena Ilić. 2022. Computing Sprague-Grundy values for arbitrary partitions.

https://doi.org/10.5281/zenodo.6782383
[8] Aaron N Siegel. 2013. Combinatorial game theory. Vol. 146. American Mathemat-

ical Soc.
[9] R. Sprague. 1935. Über mathematische Kampfspiele. Tohoku Mathematical

Journal, First Series 41 (1935), 438–444.
[10] R. Sprague. 1937. Über zwei Abarten von Nim. Tohoku Mathematical Journal,

First Series 43 (1937), 351–354.

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

32

Semantic Analysis of Russo-Ukrainian War Tweet Networks
Benjamin Džubur

Faculty of Computer and
Information Science,

University of Ljubljana
Večna pot 113

SI-1000 Ljubljana, Slovenia
bd5830@student.uni-lj.si

Žiga Trojer
Faculty of Computer and
Information Science,

University of Ljubljana
Večna pot 113

SI-1000 Ljubljana, Slovenia
zt0006@student.uni-lj.si

Urša Zrimšek
Faculty of Computer and
Information Science,

University of Ljubljana
Večna pot 113

SI-1000 Ljubljana, Slovenia
uz2273@student.uni-lj.si

ABSTRACT
Millions of people around the world continue to express their view
on various topics on Twitter everyday. Such data is frequently used
to generate and analyze networks of users, tweets and hashtags
based on speci�c actions, such as tweets, retweets, mentions etc.
In our study we focus on tweets related to the Russo-Ukrainian
con�ict. We combine sentiment and network analysis approaches
to produce various important insights into the discussion of the
con�ict. We focused on the most in�uential actors in the debate
as well as uncovering communities of users or hashtags which
correspond to either side of the con�ict. We discovered that the
vast majority of users express support for Ukraine, and that the
most important accounts belong to political leaders (e.g. Volodymyr
Zelenskyy), relevant organizations (NATO) or media outlets, who
actively report on the con�ict (Kremlin News). Similarly, most of
the relevant hashtags are used predominantly in a pro-Ukraine
context, while many of them appear in tweets supporting Russia as
well (e.g. #war, #Russia). We have identi�ed numerous communities
within the networks, which belong to discussions about the con�ict
being held in various languages or about various aspects, that
the war indirectly a�ects (e.g. �nance & cryptocurencies). Apart
from a few very evidently pro-Russia communities, all the groups
express support for Ukraine to at least some degree. Future research
should focus on more thoughtful data collection and consequently
thorough analysis of various aspects of the networks.

KEYWORDS
Network analysis, war in Ukraine, sentiment analysis.

INTRODUCTION
Twitter has become one of the most important platforms for public
response to current a�airs. People join in on debates by tweeting,
retweeting, hash-tagging, replying to or mentioning other users. In
such ways, people tend to form like-minded groups or communities.

Since the beginning of Russia’s invasion on Ukraine at the end of
February 2022, the con�ict has become the prevailing talking point
of many mainstream as well as social media outlets. On Twitter,
millions of tweets are still made in regards to the con�ict every
day. This provides an excellent opportunity for in-depth analysis of
various social aspects of the con�ict. By constructing networks from
Twitter data, e.g. as in Figure 1, based on users, tweets, hashtags
etc., this study provides answers to important questions about
social aspects of the con�ict, namely: who are the most important
users and what is their role in the debate? Are there speci�c users
or hashtags that are pro-Russia or pro-Ukraine and do they form

clear communities, or do communities correspond to some other
semantic property? Are there notable di�erences in tweets being
posted before and after the ban of Twitter in Russia?

With the help of modern sentiment and network analysis ap-
proaches, this study provides an important high-level view into the
con�ict. The questions listed above are answered in the following
sections. The results are not only interesting to the general public
and social scientists for future research, but also to PR professionals,
media outlets, and perhaps even world leaders.

Glory to Ukraine!

Glory to #Ukraine!
#Russia should
stop invading

#Ukraine

#Ukraine#Russia

Figure 1: Diagrams of two models of graphs, constructed for
our analysis. Left: projected directed user graph based on
retweet connections. Right: tri-partite graph between users,
tweets and hashtags.

RELATEDWORK
Today, social networks play a critical role in online social dis-
course, particularly during major events such as elections, pub-
lic a�airs, COVID-19 and wars. The authors of [9] and [8] ana-
lyzed the elections in the United States and Italy using Twitter
data. Study [9] looked at the evolution of the retweet graph over
time, focusing on the two main entities. They identi�ed �uctua-
tions in sentiment and measured the volume around each entity.
In [8] they used network analysis techniques such as triadic clo-
sures, degree-degree correlations, k-core decomposition, and core
periphery structure detection to analyze complex semantic struc-
tures, prominent topic connections, similar topics within di�erent
communities, and how topics animate the discussion over time.
They noted that connecting users with tweets using retweets mod-
els user preference better than using mentions or replies. In [13]
authors analyzed the who is following who network to highlight
users whose position is particular – important entities. Speci�cally,
they showed that linguistic groups are key factors to explain cer-
tain clusters. The authors of [6] used network analysis techniques
to visualize di�erent network models on COVID data and used
centrality to �nd the network’s most in�uential hashtags. The au-
thors of [5] used sentiment classi�cation to enhance community

h�ps://doi.org/10.51939/scores22.09

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

33

Benjamin Džubur, Žiga Trojer, and Urša Zrimšek

detection and vice-versa. Di�erent supervised techniques for senti-
ment analysis on Twitter, such as Naive Bayes, max entropy, and
SVM, are proposed in [14], but those methods are usually used for
positive and negative sentiment. With the rise of deep language
models, such as RoBERTa [10, 11], more complex data domains can
be analyzed, e.g., news texts, where authors typically express their
opinion and di�erent topic analysis can be done (e.g. republican
vs democratic). Authors of [7] used similar models to investigate
target-dependent sentiment classi�cation in news articles. A recent
study by [16] looked into tweets about the crisis between Ukraine
and Russia. They found that most popular hashtags are #Ukraine,
#Russia, #StandWithUkraine, #Putin, #UkraineRussiaWar, and
#StopPutin. Additionally, they conducted sentiment analysis and
tracked daily positive and negative sentiment between Zelenskyy
and Putin and between Ukraine and Russia. They veri�ed that the
majority of Twitter users support the Ukrainian side and that Putin
is the subject of the majority of negative tweets.

RESULTS
General analysis. Using RoBERTa, we �rst assign a probability
(referred to as pro-Russia score or PRS in the following) of sup-
porting Russia instead of Ukraine to each tweet. The distribution
on both datasets is shown in Figure 2. As expected, we observe
signi�cant support for Ukraine in the analyzed tweets. On the 65D
sample, data collection is less biased (see Data). However, these
models can struggle with sarcasm and produce indecisive scores
when content is complex or cannot be directly connected to the
predicted classes, which explains the peak at 0.5 and heavier right
tail on aforementioned dataset. We also found no noticeable dif-
ference in distributions of pre- and post-ban PRS. We constructed
4 main networks for our analysis: a projected hashtag network,
two projected user networks based on di�erent types of connec-
tions (mentions and retweets) and a tri-partite user-tweet-hashtag
network. Basic statistics of the networks are seen in Table 1.
Hashtag network connects hashtags that co-appear, with edge
weight representing the number of co-appearances. Each node has
two attributes: the number of tweets it appeared in and it’s PRS,
calculated as the mean of these tweet PRSs. The network is scale
free and small-world. Mean PRS in LCC equals to 0.29, while mean
PRS of nodes outside of it is 0.42.

Table 1: Network statistics.

network type data = < h:i LCC

hashtag 65D 17k 79k 9.16 84%
user (retweet) 25M 167k 189k 2.26 62%
user (mention) 25M 79k 115k 2.91 76%
tripartite 25M 571k 924k 3.24 83%

= - number of nodes,< - number of edges, h:i - average node degree, LCC - largest connected
component

We ran PageRank on the network, separated hashtags into pro-
Ukraine (PRS below 0.4) and pro-Russia (PRS above 0.6) and selected
the most important ones in each group. It turns out that most im-
portant pro-Russia hashtags are #istandwithputin, #csto (post-
Soviet intergovernmental military alliance) and #notmypresident
(references Biden), while the most important pro-Ukraine hashtags
are #ukraine, #standwithukraine and #nato.

Figure 2: Distribution of tweet pro-Russia score (PRS) on
300k data samples.

To see how hashtags form groups on Twitter, we used Infomap
on the LCC, �ltered out small clusters (less than 15 hashtags) and
calculated their average PRS. The largest cluster includes common
hashtags like #ukraine, #russia, #nato, #putin and has average
pro-Russia probability of 0.38. The most pro-Russia cluster, with
mean PRS of 0.58, is clearly representing American republicans. The
second one, with similar PRS is connected to Kazakhstan protests.
Five out of ten top pro-Russia clusters tweet about di�erent types
of investments: stock market, cryptocurrencies, commodities, forex,
etc. with average PRS around 0.5. The most pro-Ukraine clusters
are heterogeneous, but some talk about transport, helping refugees,
or represent di�erent languages (German, Ukrainian) or groups
(tech, fashion, art) showing their support.

In Figure 3 we can see the main core of the network, obtained
with k-core decomposition, where : = 51. All 89 hashtags in it have
less than 0.5 PRS, with a mean PRS of 0.29. We conducted a permu-
tation test as we hypothesized that the main core is signi�cantly
more pro-Ukraine than a random subgraph of the same size. We
estimated the average PRS of 10,000 randomly selected subgraphs
and compared it to the PRS of the main core. It was lower in 25%,
indicating that it is not completely random, but with a p-value
of 0.25 we are unable to con�dently claim that it is signi�cantly
pro-Ukraine.
User retweet network is a directed, scale free network, which
we tried to visualize and �nd di�erent clusters on (similar as in
[13]). Figure 4 shows a sub-network of the retweets network; we
�ltered out nodes with : < 5 before taking only nodes in the largest
connected component. There are four well-de�ned clusters, each
of which was annotated based on it’s distinguishable topic. The
cluster on the left is zoomed in at the bottom. This is the only
cluster that is dominantly pro-Russia and it represents a group
of Italian-speaking users. After digging deeper into this data, we
discovered that it is annotated as pro-Russia, because their tweets
are interpreted as slightly pro-Russia by the model, e.g. (translated):
"Of which side should we take sides now? From Italy and the Italians
who will pay more...", but they do not strongly side with Russia,
with mean PRS 0.56. We observe a high density of edges between
the "Eastern extremist" and "Journalists and the Western World"
clusters, which is a result of the fact, that Eastern sites occasionally
post explicit content, which the other cluster frequently retweets.
The Tigray cluster is particularly interesting because the main
topic of discussion is not the Ukraine war, but rather the Tigray
war. Users in this cluster frequently express their belief that the
Western world only reports on and aids in the �ght against wars in
Europe, but is unconcerned about the war in Ethiopia.

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

34

Semantic Analysis of Russo-Ukrainian War Tweet Networks

Figure 3: Main core (k=51) of hashtag network. Edge thick-
ness is proportional to hashtag co-appearance and node
size to number of appearances. Some thin edges are hid-
den. Lighter color of nodes represents higher PRS. From
#stoprussia (0.06) to #belarus (0.47).We can observe a strong
connection between #ukraine and #russia that appear to-
gether in many tweets and a well de�ned color gradient over
the network.

On the same network, we used the PageRank algorithm to de-
termine the most in�uential pro-Ukraine users: lesiavasylenko
(member of the Ukrainian parliament), HannaLiubakova (Belorus-
sian journalist), nexta_tv (the largest Eastern European media)
and pro-Russia users: MauriceSchleepe (Russian news), ejmalrai
(veteran war journalist) and Charles_Lister (Syrian reporter).

Figure 4: Sub-network of retweets network, consisting of
nodes with : � 5 and nodes within LCC (= = 8575,< = 47851).
Red color represents pro-Ukraine users and green color rep-
resents pro-Russia users. Size represents in-degree of the
node.

Mentions network is a scale free network, on which we tried to
�nd most in�uential users. PageRank returns the following pro-
Ukraine users: zelenskyyUa, POTUS, nato and pro-Russia users:

createimagic (suspended account), kevjmclaughlin (suspended
account) and needlesineyes (misclassi�ed by the model as a pro-
Russian).
Additional analysis. On above user networks, we were unable
to �nd similar core-periphery structure results as with hashtags,
using k-core decomposition. However, we have found signi�cant
assortativity based on PRS, with a coe�cient of 0.37 on the user
(retweet) network.

On the tri-partite network, the 5 largest communities found by
Infomap cover 35% of the network and contain the main discourse
about the con�ict in English. However, the communities which
follow by size have an immediately distinguishable property, such
as language – Spanish (16k nodes), Thai (11k), French (9k), German
(8k), Italian (7k), Indian (6k) etc., or other topics such as hackers (6k),
NFTs and Cryptocurrency (6k), etc. These communities are notably
pro-Ukraine with average PRS 0.3. Only the 26th largest community
with 3k nodes has been found to be noticeably pro-Russia with PRS
0.68 and popular hashtags such as #istandwithputin.

DISCUSSION
To summarize, we analyzed two Twitter datasets and found similar
results. The majority of tweets are in favor of Ukraine, with many
being falsely labeled as pro-Russia as a result of the nature of our
process of semantic inference. Here we highlight the community
of Italian users, which are mostly labeled as slightly pro-Russia,
although this is not apparent from the tweets. However, we have
identi�ed a few communities of pro-Russian accounts, many of
which have been suspended.

Nevertheless, we observed no di�erences in the ratio of pro-
Russia to pro-Ukraine tweets between pre- and post-ban of Twitter
in Russia, as we might have expected. This is likely to be due to
the speci�cs of data collection in our case. When it comes to the
most important actors in either side of the debate, we identi�ed
important politicians such as Zelenskyy and the US President as
well as NATO to �ll that role for the pro-Ukrainian side, as we
might have expected. Important supporters of the Russian side
include local media outlets and in�uential independent journalists.
As expected, we found that most users tend to retweet posts from
users with a similar stance on the con�ict.

When it comes to hashtags, we found that all the most pop-
ular ones are primarily used in a pro-Ukraine setting, even e.g.
#Russia, which frequently co-appears with #Ukraine. Clusters in
the hashtag network show that American republicans tend to be
pro-Russia. They use #notmypresident in reference to Joe Biden,
making them side with Trump and consequently (on average) with
Russia. While the core hashtags are noticeably pro-Ukraine, others
from the periphery are more neutral as they do not directly address
the con�ict.

Unfortunately, aside from identifying various linguistic commu-
nities (most of which were found to be pro-Ukraine), location data
was mostly lacking and thus inappropriate for analysis. This could
be further looked into in future research alongside a more in depth
temporal semantic analysis. A shortcoming of this analysis was the
data collection process, which was here bypassed and should be
addressed appropriately (considering e.g. balance, completeness).

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

35

Benjamin Džubur, Žiga Trojer, and Urša Zrimšek

We suggest using information from various platforms, for ex-
ample VKontakte and Weibo (considered as Russian and Chinese
Twitter respectively), for a potential future work. In a sense, the
data would be less biased in this way, since it would broaden the
scope of the research onto those who don’t use Twitter.

METHODS
Data.We found two datasets connected to the con�ict. The �rst dataset [2],
was gathered from Jan 1, 2022 to Mar 5, 2022, using certain keywords for the
search, such as ukraine war, russian troops, ukraine troops, etc. The
second one [3], has over 25 million tweets and has been updated on a daily
basis since February 27, 2022. It contains tweets whose geolocation was
found to be in Ukraine or they contained hashtags such as: #SlavaUkraini,
#Russia, #RussiaUkraineWar, #Putin, #ukraineunderattack, #Stop-
PutinNow.

For our analysis, we constructed random subsamples of the two datasets
of size 300k, in order to decrease computational complexity while preserving
structural properties we were interested in analyzing. We label these two
samples as 65D and 25M respectively.

Because information about retweets is only contained in the 25M dataset
from Apr 23, 2022 onward, we prepared an additional 300k sub-sample
which contains only such data to construct our retweet-based user network.

We argue that the results reported on these subsamples are representa-
tive of the full data and that they retain the structural properties of interest.
By sampling multiple graphs of the same size and calculating the standard
deviation for the average node degree (fh:i = 0.003) and the largest con-
nected component (f!⇠⇠ = 1.5%), we validated that di�erent randomly
sampled subgraphs retain these properties.

The structure of the graphs was also examined by computing the Jaccard
index, which is a statistic used for gauging the similarity and diversity
of sample sets. When looking at nodes with degree > 50, we discovered
that 80% of nodes overlap between di�erent samples. We also assessed the
degree di�erence for each node that appears in both graphs at the same time
and discovered that the di�erence is modest (38 5 5 = 12.5 ± 0.2), implying
that local structure is preserved across all samples. Because the standard
deviation of the aforementioned statistics across di�erent samples is failry
small, we realized that the global and local structure of the graphs matched
across samples.
Methods & algorithms. In order to perform semantic analysis, we use a
0-shot pre-trained multilingual model [1], based on BERT. This transformer-
based state-of-the-art languagemodel has been successfully used in di�erent
�elds of Natural Language Processing and especially for the task of Twitter
data classi�cation [17]. The model used for our analysis takes as input
query text (e.g. a tweet) and a possible set of labels. In our analysis, we used
the labels "support Russia" or "support Ukraine". The model semantically
interprets the inputs and computes a probability distribution over the set
of labels. The probabilities represent the likelihood of the query text being
associated with the respective labels. This is a simple but e�ective technique
of labeling our data, which allows us to also assign probabilities to users
or hashtags, based on tweets they are directly connected to by averaging.
By using a di�erent set of labels for our tweets, namely: "pro Russia" and
"pro Ukraine", we observed a high Pearson correlation coe�cient of 0.83,
showing the model’s semantic understanding capabilities.

For the rest of our analysis, we resorted to Infomap for community
detection and k-core decomposition for analysis of the networks’ core and
periphery, PageRank centrality for measuring importance of nodes, Pearson
correlation for evaluating assortativity based on PRS and permutation test
for evaluating PRS signi�cance of subgraphs. For our �exible visualizations,
we relied on Gephi software. We selected Infomap for community detection,
because it proved to be a reliable method during our previous work. In [12]

they show its consistent performance over synthetic and real datasets. K-
core and PageRank were selected because their algorithms (described in [4]
and [15]) simulate the behaviour of Twitter users. PageRank simulates how
a user would surf over Twitter, by clicking on users mentioned in tweets of
the user whose feed he is scrolling (similarly with hashtags). K-core shows
the most important users/hashtags by iteratively deleting those that are
connected to least others, and thus have lower probability that someone
would click on them.

REFERENCES
[1] 2020. xlm-roberta-large-xnli. https://huggingface.co/joeddav/xlm-roberta-large-

xnli. Accessed: 2022-05-15.
[2] 2022. Russia-Ukraine war - Tweets Dataset. https://www.kaggle.com/datasets/

foklacu/ukraine-war-tweets-dataset-65-days. Accessed: 2022-05-15.
[3] 2022. Ukraine Con�ict Twitter Dataset. https://www.kaggle.com/datasets/

bwandowando/ukraine-russian-crisis-twitter-dataset-1-2-m-rows. Accessed:
2022-05-15.

[4] José Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro
Vespignani. 2005. k-core decomposition: A tool for the visualization of large
scale networks. arXiv preprint cs/0504107 (2005).

[5] Deitrick et al. 2013. Mutually Enhancing Community Detection and Sentiment
Analysis on Twitter Networks. Journal of Data Analysis and Information Process-
ing 01 (01 2013), 19–29. https://doi.org/10.4236/jdaip.2013.13004

[6] Habibi et al. 2021. Hashtag Analysis of Indonesian COVID-19 Tweets Using
Social Network Analysis. IJCCS (Indonesian Journal of Computing and Cybernetics
Systems) 15 (07 2021), 275–284. https://doi.org/10.22146/ijccs.61626

[7] Hamborg et al. 2021. NewsMTSC: A Dataset for (Multi-)Target-dependent Sen-
timent Classi�cation in Political News Articles. 1663–1675. https://doi.org/10.
18653/v1/2021.eacl-main.142

[8] Radicioni et al. 2021. Analysing Twitter semantic networks: the case of 2018
Italian elections. Scienti�c Reports 11 (06 2021), 13207. https://doi.org/10.1038/
s41598-021-92337-2

[9] Shevtsov et al. 2020. Analysis of Twitter and YouTube during USelections 2020.
ArXiv abs/2010.08183 (2020).

[10] Tan et al. 2022. RoBERTa-LSTM: A Hybrid Model for Sentiment Analysis With
Transformer and Recurrent Neural Network. IEEE Access 10 (2022), 21517–21525.
https://doi.org/10.1109/ACCESS.2022.3152828

[11] Wolf et al. 2019. HuggingFace’s Transformers: State-of-the-art Natural Language
Processing. https://doi.org/10.48550/ARXIV.1910.03771

[12] R George, K Shujaee, M Kerwat, Z Fel�i, D Gelenbe, and K Ukuwu. 2020. A
comparative evaluation of community detection algorithms in social networks.
Procedia Computer Science 171 (2020), 1157–1165.

[13] Grandjean. 2016. A social network analysis of Twitter: Mapping the digital
humanities community. Cogent Arts and Humanities 3 (04 2016), 1171458. https:
//doi.org/10.1080/23311983.2016.1171458

[14] Vishal Kharde and Sheetal Sonawane. 2016. Sentiment Analysis of Twitter Data:
A Survey of Techniques. International Journal of Computer Applications 139 (04
2016), 5–15. https://doi.org/10.5120/ijca2016908625

[15] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The
PageRank citation ranking: Bringing order to the web. Technical Report. Stanford
InfoLab.

[16] Alexander Shevtsov, Christos Tzagkarakis, Despoina Antonakaki, Polyvios
Pratikakis, and Sotiris Ioannidis. 2022. Twitter Dataset on the Russo-Ukrainian
War.

[17] Hamada M Zahera, Ibrahim A Elgendy, Rricha Jalota, and Mohamed Ahmed
Sherif. 2019. Fine-tuned BERT Model for Multi-Label Tweets Classi�cation.. In
TREC. 1–7.

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

36

Performance evaluation of the SloBERTa and XML-RoBERTa
transformer models on the Slovenian news corpus SentiNews 1.0

Martin Domajnko
martin.domajnko@student.um.si

Faculty of Electrical
Engineering and Computer Science,

University of Maribor
Koroška cesta 46

SI-2000 Maribor, Slovenia

Jakob Kordež
jakob.kordez@student.um.si

Faculty of Electrical
Engineering and Computer Science,

University of Maribor
Koroška cesta 46

SI-2000 Maribor, Slovenia

ABSTRACT
Sentiment analysis, also called opinion mining, is a highly restricted
natural language processing problem. This paper presents the use
of existing SloBERTa and XML-RoBERTa models on the Slovenian
news corpus SentiNews 1.0 and compares their performance. The
results are further compared to the results achieved by the Multi-
nomial Naive Bayes and Support Vector Machines methods used in
the dataset paper. The trained models are also applied to data col-
lected from the social media platform Reddit, in order to analyse the
sentiment of posts and comments from the Slovenian community.

KEYWORDS
sentiment analysis, transformers, natural language processing,
RoBERTa

1 INTRODUCTION
The rapid growth of digitally recorded opinion data over the past
two decades is a key driver of the growing popularity of sentiment
analysis. A lot of research is focused on collecting and analysing the
data from review websites, forums and social media platforms like
Twitter [1, 16], Internet Movie Database (IMDB) [9] and Amazon
[11]. The data is collected with the help of web scraping tools and
the social media platforms’s own public API services.

Sentiment analysis research has been mainly carried out at three
levels of granularity: document level, sentence level, and aspect
level [7]. The problem can be approached as a binary classi�cation
problem, where the text is classi�ed as positive or negative, or as
a multi-class classi�cation problem, where the text is classi�ed as
positive, negative, or neutral. The latter can also use a di�erent set
of three or more classes.

Firstly, a brief overview is given of the di�erent approaches
to sentiment analysis and a more exhaustive description of the
most popular methods currently. This is followed by an outline
of the dataset we used to train and evaluate the selected models
and an examination of the data we scraped from the social media
platform Reddit. Section 4 describes the training and evaluation
pipeline. Results and �ndings are presented in Section 5 and the
paper conludes in Section 6 with possible improvements.

2 RELATEDWORK
Reviews of products or services and social media posts are the pri-
mary targets for sentiment classi�cation. The employed techniques
can be divided into three groups according to the methods they use.

The machine learning approach uses machine learning models in
combination with linguistic features, and can be broken down into
supervised and unsupervised learning methods. The lexicon-based
approach utilizes pre-prepared sentiment lexicons and is also di-
vided into dictionary-based methods and corpus-based methods.
The �nal approach is the hybrid approach, which combines the
aforementioned methods [12].

Using computational methods, sentiment analysis systematically
analyses people’s expressed subjective information, such as opin-
ions and emotions, towards di�erent entities. The current state-of-
the-art performance is realized with deep learning models using the
means of self-attention, also known as transformers [18]. The con-
cept was �rst presented by the combined team from Google Brain
and Google Research in their 2017 paper "Attention is all you need"
[18]. The Transformer model solved the recurrent neural networks
and long short-term memory networks biggest constraint, that of
sequential computation. The model doesn’t rely on recurrence, but
it insted relies entirely on an attention mechanism to draw global
dependecies between input and output [18]. The model achieves
faster computation times, because it allows for signi�cantly more
parallelization.

The most widely used language representation model is BERT,
which stands for Bidirectional Encoder Representations from Trans-
formers. It leverages the bene�ts of transformers and extends them
with the ability to train the models on large unlabelled datasets
and then �ne-tune them, with just one additional output layer,
on a wide range of downstream tasks [5]. One downside of these
models is that, because of their size, they are hard to run in con-
strained computational environments. Authors in [15] proposed
a distilled version of the BERT model called DistilBERT, which
reduces the model’s size by 40% and increases its speed by 60%
while still achieving 97% of its performance. Further research on
the BERT model has shown it to be considerably under trained
[8]. The model RoBERTa, which stands for Robustly optimized
BERT approach, proposed some modi�cations to the pre-training
procedure that improved end-task performance and achieved state-
of-the-art results on GLUE [19], SQuAD [14] and RACE [6] datasets
[8]. Another important mention is the transformer-based multilin-
gual masked language model XLM-R, which was pre-trained on
text in 100 languages [4]. In our work, we compare it against the
monolingual Slovene RoBERTa model [17] in two and three class
sentiment analysis tasks.

h�ps://doi.org/10.51939/scores22.10

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

37

Martin Domajnko and Jakob Kordež

Table 1: Number of negative, neutral and positive examples
in the dataset based on the level of granularity

Level of Sentiment Totalgranularity Negative Neutral Positive
Sentence 26.74% 56.98% 16.28% 168,899
Paragraph 26.36% 57.38% 16.26% 89,999
Document 32.00% 52.03% 15.97% 10,427

3 USED DATA
3.1 Dataset
For the training and evaluation of the models, we used the manually
sentiment annotated Slovenian news corpus SentiNews 1.0 [2].
The data is sentiment annotated on three levels of granularity:
sentence, paragraph and document level [2]. Our models were only
trained on the sentence and paragraph levels. The same corpus
is also presented in [3], where it was used to train two classi�ers
(Multinomial Naive Bayes and Support Vector Machines). We also
compare the performance of our models to the results given in [3].

We split the corpus randomly into training, validation and testing
sets with the sklearn Python library. The training set contained
90% of the data, while each of the other two contained 5%. As seen
in Table 1, the data is heavily imbalanced and favours the neutral
class.

3.2 Scraped data
We decided to scrape the r/Slovenia subreddit because the majority
of the posts there were in Slovene. We accomplished this with a
Python 3 script using the praw1 package, which is a Reddit API
wrapper. Because we wanted to scrape the whole subreddit, we also
used the package psaw2 which in combination with praw enabled
us to fetch more than only 1000 posts that we were limited to before.

Using the �rst script, we were able to obtain the IDs and �airs
of all the posts, group them by their �air (category), and save them
locally. Our second script then enabled us to individually fetch posts
by their IDs. We decided to fetch the post title, body text, score,
upvote ratio, a timestamp of when it was created and the comments
which we �attened from a tree structure to a list. Each comment
has a numerical score and a text entry. After we removed all posts
that were simply links to other posts and �ltered the remaining
posts, we were left with 14,000 posts which combined contained
nearly 240,000 comments.

Not all posts and comments were in Slovene, some were in Eng-
lish. Most of the English posts were foreign people asking questions,
so we decided to �lter only Slovene posts and comments. We ac-
complished this with the help of N-Gram-Based text categorization
with a Slovene and an English corpus. After �ltering, we were left
with 9,000 posts and 174,000 comments.

4 METHOD
Transformer models follow an encoder-decoder structure. For them
to be able to process the text, it is �rst transformed into numerical
vectors, also called word embeddings. Since the models don’t use
1https://github.com/praw-dev/praw
2https://github.com/dmarx/psaw

any recurrence, the word embeddings are also combined with po-
sitional encodings, which present information about the relative
or absolute position of the tokens in the sequence [18]. Our work
�ne-tuned the XLM-RoBERTa (XLM-R) [4] and SloBERTa [17] mod-
els for Sentiment Analysis. PyTorch [13] based implementations of
the models from the open-source Transformers library [20] were
used. The models and tokenizers were already pre-trained on large
datasets.

The architecture and training approach used in the SloBERTa
model [17] is the same architecture as the RoBERTa base model [8],
but it uses a di�erent tokenization technique. For this, a Sentence
Piece3 model was trained, which splits the text into tokens and
encodes it into subword byte-pair encodings. The model has a
vocabulary size of 32000 subword tokens [17]. The model is closely
related to the French monolingual model CamemBERT [10]. The
pre-trained SloBERTa model we used, is the second version of the
model, which was trained for 200000 updates in total [17].

XLM-R [4] is a multilingual version of the RoBERTa [8] model.
Instead of using language-speci�c preprocessing and byte-pair en-
coding, the model uses a Sentence Piece model trained on raw text
data for all languages. The pre-trained XLM-R model we used, was
trained for 1.5 Million updates on �ve-hundred 32GB Nvidia V100
GPUs with a batch size of 8192 and has a vocabulary size of 250000
[4].

5 RESULTS
5.1 Experimental setting
The Kaggle environment with an Nvidia Tesla P100 GPU was used
for training the models. We used a batch size of 32 and a learning
rate of 6 ⇥ 10�7 for the SloBERTa model [17] and a batch size of
8 and a learning rate of 1 ⇥ 10�7 for the XLM-R model [4]. The
hyperparameters were selected empirically. Additionally, to reduce
the e�ects of class imbalance in the training data set, each model
was supplied with precomputed class weights. The models were
trained for a total of 20 epochs.

5.2 Model performance
The models, trained on the dataset annotated on the paragraph level
of granularity, were evaluated on binary (positive and negative) and
multi-class (positive, negative, and neutral) sentiment analysis tasks.
The results in Table 2 show that on the binary classi�cation task,
both the SloBERTa model and XLM-R model achieve similar results
with an accuracy above 90%. On the other hand, the multi-class
classi�cation task results show that the XLM-R model performs
better, with an accuracy of 70.49%, compared to the accuracy of
the SLoBERTa model of 66.04%. Additionally, the SloBERTa model
trained on the dataset annotated on the sentence level of granularity,
was also evaluated on binary and multi-class sentiment analysis
tasks. The model’s performance was compared to the SVM and
NBM models presented in paper [3]. The results are collected in
Table 3 and show that the much simpler NVM and NBM models
outperform the SloBERTa model on both binary and multi-class
classi�cation tasks. Additionally, all the models achieve an accuracy

3https://github.com/google/sentencepiece

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

38

Performance evaluation of the SloBERTa and XML-RoBERTa transformer models on the Slovenian news corpus SentiNews 1.0

Table 2: Comparison of results on the dataset annotated on
the paragraph level of granularity, for the SloBERTa and
XLM-R models, on binary (positive and negative) and multi-
class (positive, negative, and neutral) sentiment analysis
tasks. The �rst two columns contain the model name and
number of classes. The other four columns present themodel
accuracy, precision, recall and F1 norm metrics.

Model No. of Accuracy Recall Precision F1classes
SloBERTa 2 91.19 90.91 90.67 90.79
XLM-R 2 91.29 90.83 90.89 90.86

SloBERTa 3 66.04 72.19 64.74 65.70
XLM-R 3 70.49 68.93 67.84 68.35

Table 3: Comparison of results on the dataset annotated on
the sentence level of granularity, for the SloBERTa model
and the two models (SVM and NBM) presented in paper [3],
on binary (positive and negative) and multi-class (positive,
negative, and neutral) sentiment analysis tasks. The �rst two
columns contain the model name and number of classes. The
other two columns present the model accuracy and F1 norm
metrics.

Model No. of Accuracy F1classes
SloBERTa 2 90.40 89.87

SVM 2 93.10 94.86
NBM 2 95.21 96.38

SloBERTa 3 65.47 64.64
SVM 3 73.10 55.35
NBM 3 66.46 61.20

above 90% on the binary task and an accuracy above 65% on the
multi-class task.

5.3 Reddit analysis
The goal of this experiment was to analyse the sentiment of posts
and comments made in the Slovenian community on the social
media platform Reddit. We also looked for a potential correlation
between the score, �air, and sentiment of the analysed posts and
comments.

In the process of �ne-tuning, a model trained to perform on a
given task is tweaked to perform on a second similar task. We used
the SloBERTa and XLM-R models, which were �ne-tuned for binary
and multi-class sentiment analysis tasks on the dataset annotated
at the paragraph level of granularity, to predict the sentiment of the
9,000 posts and 170,000 comments scraped from the social media
platform Reddit.

Table 4 summarizes the sentiment classi�cation distribution of
posts and comments. We can see that the multi-class SloBERTa
model classi�es the posts and comments evenly between the three
sentiments, while the XLM-R model classi�es more posts and com-
ments as neutral.

Table 4: Classi�cation results for posts and comments, made
by the SloBERTa and XLM-R models trained on the dataset
annotated on the paragraph level of granularity.

Model No. of Negative Neutral Positiveclasses
SloBERTa 2 48.66% / 51.34%
XLM-R 2 56.53% / 43.47%

SloBERTa 3 32.66% 37.80% 29.54%
XLM-R 3 22.08% 61.22% 16.70%

We found that posts and comments with more downvotes than
upvotes tend to have a negative sentiment rather than a positive
one. Furthermore, longer comments and comments with a score
above 250, are more likely to be classi�ed as negative.

When we grouped posts by their �air, we found that posts tagged
with the �air “Question” had a much larger number of neutral posts.
The �airs “News” and “Article” had an equal number of posts with
positive and negative sentiments, but their comments were heavily
leaning to the negative side. We also found that posts and comments
tagged with the �air “Discussion” were more negative than positive.

6 CONCLUSION
In this study, we �ne-tuned two transformer models, SloBERTa and
XLM-R, for binary and multi-class sentiment analysis tasks on the
Slovenian news corpus SentiNews 1.0. Both models achieved similar
results on the binary classi�cation task, while on the multi-class
classi�cation task, the XLM-R model performed better. Additional
comparison of the SloBERTa model with the NVM and NBMmodels
has shown that the transformer model achieves slightly worse
results on both binary and multi-class classi�cation tasks. The
trained models were also applied on data scraped from the social
media platform Reddit. The results have shown that the XLM-R
model is more likely to classify posts and comments as neutral,
while the SloBERTa model classi�es all classes evenly.

REFERENCES
[1] Francesco Barbieri, Jose Camacho-Collados, Leonardo Neves, and Luis Espinosa-

Anke. 2020. TweetEval: Uni�ed Benchmark and Comparative Evaluation for
Tweet Classi�cation. https://doi.org/10.48550/ARXIV.2010.12421

[2] Jože Bučar. 2017. Manually sentiment annotated Slovenian news corpus Sen-
tiNews 1.0. http://hdl.handle.net/11356/1110 Slovenian language resource
repository CLARIN.SI.

[3] Jože Bučar, Martin Žnidaršič, and Janez Povh. 2018. Annotated news corpora and
a lexicon for sentiment analysis in Slovene. Language Resources and Evaluation
52, 3 (Feb. 2018), 895–919. https://doi.org/10.1007/s10579-018-9413-3

[4] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guil-
laume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer,
and Veselin Stoyanov. 2019. Unsupervised Cross-lingual Representation Learning
at Scale. https://doi.org/10.48550/ARXIV.1911.02116

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers). Association for Computational Linguistics, Minneapolis,
Minnesota, 4171–4186. https://doi.org/10.18653/v1/N19-1423

[6] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. 2017.
RACE: Large-scale ReAding Comprehension Dataset From Examinations. https:
//doi.org/10.48550/ARXIV.1704.04683

[7] B. Liu. 2015. Sentiment analysis: Mining opinions, sentiments, and emotions. 1–367
pages. https://doi.org/10.1017/CBO9781139084789

[8] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa:

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

39

Martin Domajnko and Jakob Kordež

A Robustly Optimized BERT Pretraining Approach. https://doi.org/10.48550/
ARXIV.1907.11692

[9] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. 2011. Learning Word Vectors for Sentiment Analysis.
In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies. Association for Computational Lin-
guistics, Portland, Oregon, USA, 142–150. https://aclanthology.org/P11-1015

[10] LouisMartin, BenjaminMuller, Pedro Javier Ortiz Suá rez, YoannDupont, Laurent
Romary, Éric de la Clergerie, Djamé Seddah, and Benoît Sagot. 2020. CamemBERT:
a Tasty French Language Model. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Association for Computational
Linguistics. https://doi.org/10.18653/v1/2020.acl-main.645

[11] Julian McAuley and Jure Leskovec. 2013. Hidden Factors and Hidden Topics:
Understanding Rating Dimensions with Review Text. In Proceedings of the 7th
ACM Conference on Recommender Systems (Hong Kong, China) (RecSys ’13).
Association for Computing Machinery, New York, NY, USA, 165–172. https:
//doi.org/10.1145/2507157.2507163

[12] Walaa Medhat, Ahmed Hassan, and Hoda Korashy. 2014. Sentiment analysis
algorithms and applications: A survey. Ain Shams Engineering Journal 5, 4 (2014),
1093–1113. https://doi.org/10.1016/j.asej.2014.04.011

[13] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett
(Eds.). Curran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

[14] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016.
SQuAD: 100,000+ Questions for Machine Comprehension of Text. https:
//doi.org/10.48550/ARXIV.1606.05250

[15] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. Distil-
BERT, a distilled version of BERT: smaller, faster, cheaper and lighter. https:
//doi.org/10.48550/ARXIV.1910.01108

[16] Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang, Junlin Wu, and Yi-Shin Chen.
2018. CARER: Contextualized A�ect Representations for Emotion Recognition.
In Proceedings of the 2018 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, Brussels, Belgium, 3687–
3697. https://doi.org/10.18653/v1/D18-1404

[17] Matej Ulčar and Marko Robnik-Šikonja. 2021. Slovenian RoBERTa contextual
embeddings model: SloBERTa 2.0. http://hdl.handle.net/11356/1397 Slovenian
language resource repository CLARIN.SI.

[18] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention Is All
You Need. https://doi.org/10.48550/ARXIV.1706.03762

[19] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and
Samuel R. Bowman. 2018. GLUE: AMulti-Task Benchmark and Analysis Platform
for Natural Language Understanding. https://doi.org/10.48550/ARXIV.1804.
07461

[20] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2020. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing: System Demonstrations. Association for Computational Lin-
guistics, Online, 38–45. https://www.aclweb.org/anthology/2020.emnlp-demos.6

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

40

Spletna aplikacija za analizo tapkanja s prsti
Filip Zupančič

fz9889@student.uni-lj.si
Fakulteta za računalništvo in informatiko,

Univerza v Ljubljani
Večna pot 113

SI-1000 Ljubljana, Slovenija

Gal Žagar
gz2481@student.uni-lj.si

Fakulteta za računalništvo in informatiko,
Univerza v Ljubljani

Večna pot 113
SI-1000 Ljubljana, Slovenija

Dejan Georgiev
dejan.georgiev@kclj.si

UKC Ljubljana, Nevrološka klinika,
Zaloška 2

SI-1000 Ljubljana, Slovenia

Jure Žabkar
jure.zabkar@fri.uni-lj.si

Fakulteta za računalništvo in informatiko,
Univerza v Ljubljani

Večna pot 113
SI-1000 Ljubljana, Slovenija

POVZETEK
Diagnoza Parkinsonove bolezni je aktualen raziskovalni problem,
s katerim se soočajo zdravniki. Simptomi pri pacientih pogosto
niso jasno izraženi, kar poveča možnost za napako pri oceni bo-
lezni. Z uporabo metod strojnega učenja in razvojem namenske
uporabniške programske opreme, lahko zdravnik pridobi dodatne
informacije, ki zmanjšajo možnost napak pri diagnozi. Prav tako
lahko na ta način pacientu ponudimo izbiro, da test opravi doma.
Namen članka je predstaviti spletno aplikacijo in zaledni sistem za
preprosto analizo posnetka tapkanja s prsti, ki ga izvaja pacient.

KLJUČNE BESEDE
Aplikacija, vaja tapkanja s prsti, Parkinsonova bolezen, video po-
snetek, MDS-UPDRS.

1 UVOD
Parkinsonova bolezen je počasi napredujoča nevrodegenerativna
bolezen, za katero ne poznamo vzroka nastanka. Med najbolj očitne
znake oz. simptome bolezni spadajo bradikinezija (upočasnitev gi-
bov), tremor, rigidnost (zvišan mišični tonus), in motnje ravnotežja.
Prisotnost omenjenih motoričnih simptomov zdravniki ocenjujejo s
pomočjo Združene lestvice za oceno Parkinsonove bolezni Združe-
nja za motnje gibanja (ang. Movement Disorders Society - Uni�ed
Parkinson’s Disease Rating Scale - MDS-UPDRS) [2]. Ta vsebuje
štiri dele vprašanj in motoričnih testov, ki jih pacient izvaja v priso-
tnosti ocenjevalca/zdravnika. Eden od testov je tapkanje s prsti, ki
sodi v tretji del lestvice MDS-UPDRS (3.4). S tem testom ocenjujemo
upočasnitev gibov, ki je glavna značilnost Parkinsonove bolezni.

Pri tapkanju s prsti se pacient s kazalcem dotika palca, nato pa
kazalec kar se da oddalji; ta gib mora čim hitreje ponoviti od 10
do 15-krat. Pri tem se lahko pojavljajo različne motnje (po MDS-
UPDRS [2]):

Prekinitev gibanja Ponavadi se kaže v kratkih tresljajih, v
katerih se dlan za trenutek odmakne od pričakovane poti.

Obotavljanje je najkrajša motnja, pri kateri ima pacient te-
žave z iniciacijo gibanja. Lahko se pojavlja tudi med giba-
njem, zato jo v praksi težko ločimo od prekinitve.

Zamrznitev gibanja je stanje, v katerem se pacientova roka
popolnoma ustavi in je nekaj sekund negibna. Zaustavitev
traja dlje kot prekinitev in obotavljanje.

Upočasnitev ali zmanjšanje amplitude gibanja je s pro-
stim očesom težko prepoznati, saj se amplituda znižuje
postopoma. Lažje jo zaznamo na posnetku, z merjenjem
razdalje med palcem in kazalcem. Postopno zmanjševanje
hitrosti ali amplitude gibov je značilnost upočasnitve gibov
pri Parkinsonovi bolezni, redkeje pa ta fenomen vidimo pri
drugih oblikah parkinsonizma.

Po izvedbi testa zdravnik z oceno od 0 do 4 oceni stopnjo motnje
(Test tapkanja s prsti, MDS-UPDRS, 3.4):

(0) Pacient je test izvedel brez motenj.
(1) Nekaj od naštetega: a) pravilen ritem je prekinjen z eno ali

dvema prekinitvama ali obotavljanjem; b) rahla upočasni-
tev; c) zmanjšanje amplitude proti koncu izvajanja.

(2) Kar koli od naslednjega: a) 3 do 5 prekinitev; b) blaga upo-
časnitev; c) amplituda se zmanjša na sredini izvajanja.

(3) Kar koli od naslednjega: a) več kot 5 prekinitev ali vsaj en-
krat daljša zaustavitev; b) zmerna upočasnitev; c) amplituda
zmanjševanje se začne po 1. dotiku.

(4) Pacient ni bil zmožen dokončati testa.

Podana ocena je subjektivna in je v veliki meri odvisna od pozorno-
sti zdravnika pri ocenjevanju. Zdravnik nima možnosti ponovnega
ogleda opravljenega testa; pacient ga lahko sicer ponovno izvede,
pri čemer je treba upoštevati spremenjene pogoje - pacient se lahko
utrudi in rezultati so slabši. V pomoč zdravniku smo razvili sple-
tno aplikacijo, ki omogoča objektivno analizo in ocenjevanje testa
tapkanja s prsti. Zastavljena je kot preprost ekspertni sistem za pod-
poro odločanju pri diagnozi bolezeni. Zaledni del aplikacije skrbi za
obdelavo video posnetkov in iskanje smiselnih vzorcev v podatkih.
Uporabniški vmesnik je v osnovi namenjen gra�čnemu prikazu
analize videoposnetka. Prav tako uporabniku omogoča preprosto
nalaganje video datotek, ki jih želi analizirati.

1.1 Pregled področja
V literaturi zasledimo metode za pomoč pri diagnostiki Parkinso-
nove bolezni z uporabo strojnega učenja [1]. Ključna problema

h�ps://doi.org/10.51939/scores22.11

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

41

Filip Zupančič, Gal Žagar, Dejan Georgiev, and Jure Žabkar

sta pomanjkanje kvalitetnih podatkov in velik problemski prostor,
kar pomeni, da rešitev ni trivialna in trenutno ne poznamo najbolj
primernega pristopa k reševanju. V raziskavi �[3], ki vključuje
387 video posnetkov testa tapkanja s prsti, je bilo vključenih 13
pacientov s Parkinsonovo boleznijo; izvedena je bila klasi�kacija
z uporabo podpornih vektorjev, s katero je dosežena 88 % klasi�-
kacijska točnost. V raziskavi �[7] je opisana klasi�kacija po MDS-
UPDRS lestvici z uporabo orodja DeepLabCut za sledenje gibanja
dlani in hitra Fourierjeva transformacija za prepoznavo porazde-
litve frekvenc v časovnih vrstah posameznega premika prstov iz
ene skrajne lege v drugo. Raziskava je bila narejena na 138 video
posnetkih 39 pacientov. Rezultati so pokazali Pearsonovo korelacijo
z MDS-UPDRS (0.69, p < .001).

2 RAZVOJ APLIKACIJE
Razvili smo spletno aplikacijo, ki rešuje zgoraj omenjen problem
ocenjevanja testa tapkanja s prsti. Njen glavni namen je zdravniku
omogočiti, da si video posnetek pacienta, ki izvaja omenjeni test,
lahko večkrat (tudi upočasnjeno) predvaja in na podlagi obdelave
posnetka dobi dodatne informacije, ki mu pomagajo pri postavitvi
diagnoze.

2.1 Uporabniški vmesnik
Uporabniški vmesnik smo razvili z uporabo JavaScript ogrodjaVue.js
1. Uporabili smo tehnologije HTML in CSS za de�niranje samega
izgleda aplikacije in programski jezik JavaScript za implementa-
cijo aplikacijske logike. Uporabniški vmesnik je sestavljen iz dveh
enostavnih strani oz. aktivnosti: začetna stran in stran za prikaz
rezultatov.

2.1.1 Začetna stran. Na njej lahko uporabnik naloži video posne-
tek, ki ga želi analizirati. Na strani se nahajata 2 gumba. Prvi omo-
goča uporabniku, da naloži datoteko oz. video posnetek pacienta
(med izvedbo testa tapkanja s prsti). Dovoljena formata posnetkov
sta mp4 in avi. S klikom na gumb ‘Upload video’ uporabnik sproži
procesiranje izbranega posnetka. Posnetek se ob tem posreduje
zalednemu sistemu oz. spletnemu strežniku. Strežnik je razvit v
programskemu jeziku Python in vsebuje glavni program za procesi-
ranje video posnetkov. Z uporabo ogrodja Flask 2 smo razvili REST
API za komunikacijo med zalednim sistemom in spletno aplikacijo.

Po končanem procesiranju strežnik aplikaciji posreduje podatke
o obdelanem video posnetku. Aplikacija obvesti uporabnika o uspe-
šnosti. Pridobljene podatke shranimo v lokalno shrambo z name-
nom, da jih kasneje uporabimo na drugi strani aplikacije. Med
podatki se nahajajo naslednji parametri posnetka, ki smo jih zajeli
in izračunali med obdelavo:

• Izračunana razdalja med konico palca in konico kazalca,
v vsakem trenutku posnetka,

• Hitrost gibanja kazalca proti palcu,
• Pospešek kazalca proti palcu, ter
• Kot in kotna hitrost med palcem in kazalcem dlani.

V naslednjem koraku izračunane podatke uporabniku tudi pri-
kažemo. Tako lahko nadaljujemo z drugim delom našega vmesnika,
in sicer stran za analizo in prikaz rezultatov procesiranja.

1https://vuejs.org/
2https://�ask.palletsprojects.com/en/2.2.x/

2.1.2 Stran za analizo in prikaz rezultatov. Glavni namen je upo-
rabniku na lep način prikazati podatke predhodnega procesiranja
(slika 1).

Ena izmed glavnih komponent na tej strani je obdelan posnetek,
ki ga je uporabnik naložil v prejšnjem koraku. Med procesiranjem
na strežniku posnetek opremimo z izrisom skeleta na palcu in ka-
zalcu. Uporabnik si lahko posnetek pogleda in ga analizira s pomo-
čjo izračunanih količin. Posnetek po končani obdelavi shranimo
v S3 zabojnik (angl. S3 bucket 3) in ga od tam prek HTTP zahtev-
kov pošljemo na našo stran. Na strani prikazan posnetek si lahko
zdravnik večkrat predvaja.

Poleg posnetka na strani prikažemo tudi posamezne lastnosti
gibanja dlani, izračunane med procesiranjem posnetka. Le te so
predstavljene v obliki grafov. Trenutno sta na strani prikazana dva,
in sicer:

• Graf dolžine med konico palca ter kazalca v odvisnosti od
časa in

• Graf hitrosti gibanja palca proti kazalcu v odvisnosti od
časa.

Zdravnik poleg posnetka dobi možnost podrobne analize in vpo-
gleda v gibanje pacienta, kje se je gibanje upočasnilo, kje je prišlo do
dotika, koliko časa je trajal ter kakšne so zakasnitve med gibanjem.

3 REZULTATI ANALIZE POSNETKA
V tem razdelku podrobneje predstavimo rezultate procesiranja vi-
deo posnetka ter posamezne elemente strani za analizo in prikaz
rezultatov.

3.1 Video posnetek s skeletom dlani
Glavni del aplikacije je video posnetek, ki ga naloži zdravnik in
prikazuje pacienta med izvajanjem testa tapkanja s prsti. Po uspe-
šnem nalaganju posnetek posredujemo zalednemu sistemu, kjer ga
analiziramo in obdelamo. Iz posnetka izluščimo čim več uporabnih
informacij o gibanju pacientovih prstov med izvajanjem testa.

Za obdelavo posnetka smo uporabili knjižnico OpenCV [6] in
model Mediapipe Hands [4] za zaznavanje dlani na posnetku:

• OpenCV 4 je odprtokodna knjižnica, ki zajema področje
računalniškega vida ter strojnega učenja. Knjižnico smo
uporabili za segmentacijo posnetka na posamezne okvirje
oz. slike.

• Mediapipe Hands 5 je model za zaznavanje dlani v real-
nem času. Model je implementiran v ogrodjuMediapipe [5].
Uporabili smo ga za zaznavanje dlani na posameznih slikah,
pridobljenih po predhodni segmentaciji posnetka.

Nad vsako sliko dlani smo izvedli zaznavanje roke z uporabo
modela Mediapipe Hands. Rezultat je množica koordinat 21 točk
skeleta dlani (Slika 2). V našem programu smo za analizo posnetka
uporabili točke palca in kazalca (točke od 0 do 8) in iz njihovih
koordinat izračunali naslednje lastnosti gibanja: razdaljo med ko-
nico palca in kazalca, hitrost gibanja kazalca proti palcu, pospešek
kazalca, kot med prstoma in kotno hitrost. Te točke smo izrisali na
prvotni posnetek (Slika 3). S skeletom opremljen posnetek zaznane
dlani prikažemo v oknu aplikacije. Zdravniku omogoča večkratni
3https://aws.amazon.com/s3/
4https://opencv.org/
5https://google.github.io/mediapipe/solutions/hands.html

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

42

Spletna aplikacija za analizo tapkanja s prsti

Slika 1: Stran za analizo in prikaz rezultatov.

Slika 2: Slika prikazuje 21 točk skeleta dlani, ki jih dobimo
kot rezultat zaznavanja dlani z uporabo modela Mediapipe
Hands.

Slika 3: Na posamezni sliki video posnetka smo, s pomočjo
točk pridobljenih z zaznavanjem dlani, izrisali skelet palca
in kazalca.

pogled ter počasno, pozorno analizo. Omogoča tudi preverjanje
izračunanih podatkov, kar vpliva na zanesljivost končne diagnoze.

Slika 4: Graf prikazuje razdaljo med konico palca in kazalca
dlani v odvisnosti od časa.

3.2 Gra� posameznih lastnosti
Na strani smo poleg video posnetka prikazali še dva grafa. Z gra�
smo želeli omogočiti zdravniku podrobnejšo analizo gibanja paci-
enta. Iz njih lahko namreč razbere različne anomalije gibanja, ki so
se pojavile med samo izvedbo vaje. Gra� prikazujejo lastnosti oz.
informacije o video posnetku, ki smo jih izračunali med procesi-
ranjem. Med številnimi, zgoraj omenjenih lastnosti smo na strani
prikazali 2 grafa, in sicer:

• Graf, ki prikazuje izračunano razdaljo med konico palca in
konico kazalca v odvisnosti od časa ter.

• Graf izračunane hitrosti v odvisnosti od časa, s katero se
kazalec giblje proti palcu.

3.2.1 Graf razdalje med prstoma. Posnetek smo razdelili na posa-
mezne slike in vsako posebej analizirali. Ena pomembnejših lastno-
sti pri oceni testa je spreminjanje razdalje med palcem in kazalcem
v času. Na vsaki sliki smo izračunali razdaljo med konicama prstov;
uporabniku prikažemo graf razdalje v odvisnosti od časa (Slika 4).

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

43

Filip Zupančič, Gal Žagar, Dejan Georgiev, and Jure Žabkar

Slika 5: Slika prikazuje graf hitrosti gibanja kazalca proti
palcu, v odvisnosti od časa.

Tako si lahko zdravnik graf pogleda in prepozna različne anoma-
lije, ki so nastale med izvedbo testa. Zdravnik lahko opazi kje je imel
pacient težave z gibanjem, spremlja amplitudo gibanja in določi
ali se je pacient sčasoma utrudil in pa razpozna lahko ustavitve,
prekinitve in obotavljanje pacienta med izvedbo testa. Kot primer
lahko vzamemo sliko 4; graf prikazuje spreminjanje razdalje med
palcem in kazalcem v odvisnosti od časa. Iz njega je lepo razvidno,
da je med izvedbo testa prišlo do dveh daljših zaustavitev tapkanja.
Te informacije so lahko zelo koristne za zdravnika, ko se odloča za
končno oceno izvedbe testa.

3.2.2 Graf hitrosti gibanja. Graf hitrosti, s katero se kazalec giblje
proti palcu, pomaga zdravniku ugotoviti ali je pri izvedbi testa
prišlo do postopnega zmanjšanja hitrosti gibanja. To je namreč
tudi ena izmed pomembnih značilnosti bolezni na katero mora biti
zdravnik pozoren. Računali smo hitrost v konici kazalca dlani, in
sicer v vsaki sliki video posnetka. Čas med slikami je približno
0.03 s, za spremembo razdalje opazovane točke kazalca pa smo
uporabili kar evklidsko razdaljo med točko na predhodni sliki in pa
točko na trenutni sliki. Tako smo izračunali hitrost po posamezni
komponenti točke, EG = |3G |

C in E~ =
|3~ |
C . Po tem pa smo lahko

izračunali še skupni vektor hitrosti po formuli:

E =
q
(EG)2 + (E~)2

Rezultati za vsako posamezno sliko so bili po procesiranju shranjeni
in posredovani aplikaciji. Tako smo tudi v tem primeru na strani
prikazali graf spremembe hitrosti v času. Tudi iz tega grafa lahko iz-
lušči koristne informacije. Prepozna lahko ustavitve gibanja, krajše
prekinitve ter ali je pri gibanju prišlo do zmanjšanja hitrosti. Slika 5
prikazuje graf spremembe hitrosti gibanja pri istem pacientu kot na
sliki 4. Tudi tukaj je lepo razvidno kje je prišlo do ustavitev gibanja,
ki pričakovano časovno sovpadajo na obeh slikah.

Zdravniku smo z gra� želeli podati čim več dodatnih informacij
o poteku testa tapkanja s prsti, s katerimi bi si lahko pomagal pri
določanju končne ocene. V prihodnosti želimo na strani predstaviti
še več koristnih podatkov (npr. frekvenčna analiza, kotna hitrost,
pospešek itd.) in tako še izboljšati uporabniško izkušnjo in olajšati
analizo testa. Planiramo tudi testirati možnost kvanti�kacije am-
plitude in hitrosti gibov s primerjavo parametrov, ki jih dobimo iz

video posnetkov in klinično oceno amplitdue oz. hitrosti na podlagi
MDS-UPDRS lestvice.

4 ZAKLJUČEK
Predstavili smo spletno aplikacijo za pomoč zdravnikom pri ana-
liziranju testa tapkanja s prsti. Aplikacija zaenkrat prikazuje le
osnovne informacije in ne posega v klinično diagnozo zdravnika.
V prihodnosti si želimo iz pridobljenih podatkov ustvariti model
za razpoznavanje anomalije gibanja ter na koncu tudi podati svojo
oceno amplitude in hitrosti giba. Smiselna nadgradnja je prika-
zovanje motenj pri izvanaju testa v različnih časovnih intervalih
izvajanja. Najprej moramo iz obstoječih posnetkov razbrati še ne-
kaj dodatnih lastnosti, ki jih bo uporabljal naš model. Eden od
obetavnih pristopov je frekvenčna analiza z uporabo Fourierjeve
transformacije, s katero lahko razberemo vzorce v gibanju, ki s
prostim očesom niso vidni. Dodatno lahko anomalije v gibanju
prepoznavamo z modelom končnih avtomatov, ki je sestavljen iz
stanj, v katerih se nahaja roka med izvajanjem testa. Ključno za
zanesljiv sistem je testiranje na večjem številu posnetkov, zato bo v
prihodnosti velik poudarek na pridobivanju ustreznih podatkov.

LITERATURA
[1] Minja Belić, Vladislava Bobić, Milica Badža, Nikola Šolaja, Milica Ðurić Jovičić,

and Vladimir S. Kostić. 2019. Arti�cial intelligence for assisting diagnostics and
assessment of Parkinson’s disease—A review. Clinical Neurology and Neurosurgery
184 (2019), 105442. https://doi.org/10.1016/j.clineuro.2019.105442

[2] Christopher G Goetz, Barbara C Tilley, Stephanie R Shaftman, Glenn T Stebbins,
Stanley Fahn, PabloMartinez-Martin,Werner Poewe, Cristina Sampaio,MatthewB
Stern, Richard Dodel, et al. 2008. Movement Disorder Society-sponsored revision
of the Uni�ed Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation
and clinimetric testing results. Movement disorders: o�cial journal of the Movement
Disorder Society 23, 15 (2008), 2129–2170.

[3] Taha Khan, Dag Nyholm, Jerker Westin, and Mark Dougherty. 2014. A computer
vision framework for �nger-tapping evaluation in Parkinson’s disease. Arti�cial
Intelligence in Medicine 60, 1 (2014), 27–40. https://doi.org/10.1016/j.artmed.2013.
11.004

[4] GOOGLE LLC. 2020. Mediapipe Hands. https://google.github.io/mediapipe/
solutions/hands.html Mediapipe Hands solution page.

[5] GOOGLE LLC. 2020. Mediapipe Home. https://google.github.io/mediapipe/
Mediapipe home page.

[6] OpenCV Team. 2022. OpenCV. https://opencv.org/ OpenCV home page.
[7] Stefan Williams, Zhibin Zhao, Awais Hafeez, David C. Wong, Samuel D. Relton,

Hui Fang, and Jane E. Alty. 2020. The discerning eye of computer vision: Can it
measure Parkinson’s �nger tap bradykinesia? Journal of the Neurological Sciences
416 (2020), 117003. https://doi.org/10.1016/j.jns.2020.117003

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

44

Iterated prisoner’s dilemma and survival of the fi�est from an
ecological perspective

Martin Domajnko
martin.domajnko@student.um.si

Faculty of Electrical
Engineering and Computer Science,

University of Maribor
Koroška cesta 46

SI-2000 Maribor, Slovenia

ABSTRACT
The iterated prisoner’s dilemma is a heavily studied concept in
the �eld of game theory. It was popularized by Axelrod, and it
can be used as a tool for modelling complex interactions between
self-interested entities. The goal of this paper was to study the
impact the environment has on the development of populations of
prisoner’s dilemma strategies in a simulation, where individuals
interact with each other and play the iterated prisoner’s dilemma
game. This was done from an ecological perspective, meaning the
behaviour of strategies stayed static and didn’t evolve between gen-
erations, in a simulation extending the iterated prisoner’s dilemma
game. Additionally, the paper presents two new strategies, which
are evaluated with Axelrod’s original tournament and with our sim-
ulation. The implemented simulation uses Axelrod’s tournament as
a �tness function and �tness proportionate selection for choosing
the next generation’s strategies. Both of our strategies are based
on the n-Pavlov strategy. They achieved average results, but none
of them improved the original ones.

KEYWORDS
Prisoner’s dilemma, Iterated prisoners’s dilemma, n-Pavlov, Simu-
lation, Game theory

1 INTRODUCTION
The prisoner’s dilemma presents a situation in which two entities
each need to choose between cooperation or defection, while being
separated and unable to communicate. There are four possible
outcomes: both entities cooperate, both entities defect, or one entity
cooperates and one defects, and vice versa. In the �rst case, both
entities get an equal payo�, normally called reward and marked as
R. In the second case, both entities get the punishment payo� or P,
and in the last case, the cooperating entity gets the sucker’s payo�
or S, and the defecting entity gets the temptation payo� or T. In
the iterated prisoner’s dilemma (IPD), two players play multiple
rounds of the prisoner’s dilemma game and are able to remember
their opponent’s previous actions [5].

In the classic example of the prisoner’s dilemma game with
classically rational players, defection always yields a better payo�
regardless of the opponent’s move. Defection is therefore a strictly
dominant strategy for both players, and mutual defection presents
the Nash equilibrium move [9] of the Prisoner’s dilemma game.
This means, that each player could only do worse by unilaterally
changing their move [8]. On the other hand, in the iterated version

of the game, there are two scenarios. In the �rst case, the game has a
�xed number of rounds, which is known to both players in advance.
Therefore, defection is still the dominant strategy and the proof can
be constructed with the help of backward induction. In the second
case, where the number of rounds is unknown or in�nite, mutual
defection presents still the Nash equilibrium, but there is no strictly
dominant strategy. Studies on the iterated version of the game have
shown that most top scoring strategies are nice. This means, that
they defect only after their opponent has defected at least once.

Although the Prisoner’s dilemma game is studied and applied
in di�erent �elds, ranging from politics [12], economics [10] and
biology [6], this paper focuses more on the implementation side of
the problem. We present two new strategies for playing the iterated
prisoner’s dilemma game. The introduction of the paper gives a
short explanation of the prisoner’s dilemma game and a summary
of the paper’s structure. Section 2 presents two additional rules used
in the iterated version of the game and gives a more detailed descrip-
tion of Axelrod’s tournaments and experiments. This is followed up
with Section 3, where we present the implemented strategies used
in our experiments and explain the methods used for evaluating
their performance. In Section 4, we present the interesting results
and �nish the paper with Section 5, with a short conclusion.

2 BASIC INFORMATION
To incentivize continuous cooperation over alternating cooperation
and defection, the IPD game has two additional rules, de�ned by
conditions) > ' > % > (and 2' >) + (, where) ,', % and
(present temptation, reward, punishment, and sucker’s payo�s,
respectively [5].

Axelrod got the idea for a computer tournament from his high
school interest in arti�cial intelligence and also his interest in game
theory starting in college. While pursuing his PhD in Political
Science, the motivation for further research and understanding
di�erent ways of playing the game, were based on his desire to
promote cooperation between players. Another factor was also the
game’s potential as a source of insight into international con�icts
[3].

The IPD computer tournament consists of entrants, in this case
programs, which select cooperation or defection on each move
based on their decision rules and the history of the game so far.
The programs for Axelrod’s tournaments were provided from other
experts in the �eld of game theory and researchers studying the
Prisoner’s Dilemma game [1].

h�ps://doi.org/10.51939/scores22.12

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

45

Martin Domajnko

2.1 The �rst Axelrod’s tournament
In Axelrod’s �rst tournament, the strategies were paired against
each other in a round-robin style tournament. Additionally, each
strategy played against itself and against a strategy which randomly
cooperates and defects. The payo� matrix used in the tournament
is presented in Table 1 and each game was played for 200 moves.

Table 1: Payo� matrix for a move in the Prisoner’s Dilemma
game

Cooperate Defect
Cooperate 3, 3 0, 5
Defect 5, 0 1, 1

In total, fourteen entries were submitted to the tournament [1].
The results of the tournament had many surprises. The most im-
portant results are:

(1) the strategy Tit for Tat won the tournamnet,
(2) none of the strategies succeeded to improve the Tit for Tat

strategy, and
(3) all the top performing strategies had the property of being

nice, which means, they defect only after their opponent
has defected at least once.

Let us notice that the Tit for Tat strategy imitates its opponent’s
previous move, except in the �rst round when it cooperates.

2.2 The second Axelrod’s tournament
The entrants providing programs for the second Axelrod’s tourna-
ment were familiar with the analysis and discoveries of the �rst
round. This is the main reason, why the results produced a better
insight into the nature of e�ective choice in the Prisoner’s Dilemma.
Additionally, the size of the tournament increased from 14 to 62
entries. The rules of the tournament stayed similar to the �rst one,
except the length of the games. The length was determined proba-
bilistically with a 0.00346 chance of ending with each given move,
instead of setting a �xed number of 200 moves to play. Again, the
winner of the tournament was the Tit for Tat strategy [2]. The
main �nding from the paper presenting the second tournament is
that the performance of the strategies is heavily dependent on the
environment in which the game is played.

2.3 Axelrod’s evolving new strategies
In addition to creating the previously described tournaments, Axel-
rod also looked at the problem from an evolutionary perspective
[4]. He used the knowledge and methods from biological evolution,
applying them, with the help of genetic algorithms, to a socially rich
environment consisting of strategies submitted to the prisoner’s
dilemma tournament. The strategies, used in the simulation experi-
ment, were represented as a string of genes on a chromosome on
which genetic transformations can be applied [4]. In each step of
the simulation, the strategies played against eight representatives,
and based on their performance, the successful strategies were se-
lected for a mating process in which they produced o�spring. The
o�spring represents the next generation’s strategies. Both mutation
and crossover mechanisms were used for simulating evolution and
discovering new strategies. The �nal results of his experiments have

shown, that populations evolved members which were as good as
the strategy Tit for Tat and also many of them re�ected properties
that make Tit for Tat successful [4].

3 IMPLEMENTATION OF EXPERIMENTS
The implementation of our solution was done in the Rust program-
ming language. It heavily focuses on being extensible, adding new
strategies, and customizable, changing the starting parameters of
the tournament and simulation. The only condition for newly added
strategy is that they need to implement the base Strategy trait we
de�ned. For running the simulations, we also support reading the
starting parameters from a �le. The payo� matrix used in our ex-
periments is the same as in Axelrod’s �rst tournament, which is
shown in Table 1.

3.1 The proposed simulation
The implemented simulation was inspired by genetic algorithms,
albeit in our case, the chosen entities don’t reproduce and aren’t ex-
posed to mutations but rather are cloned. This way, no new rules are
introduced, and it presents a survival of the �ttest simulation from
a more ecological perspective rather than a strictly evolutionary
one. A similar simulation was already presented in Axelrod’s 1980
paper [2], which analyzes the results from his second tournament.

The proposed simulation starts with = di�erent strategies, each
having a population size of ? . In every step of the simulation, each
strategy plays C rounds of the prisoner’s dilemma game with all
other strategies. The total sum of scores achieved during those
games is used as a �tness function, based on which the next gener-
ation’s strategies are chosen. In the selection process, the �tness
proportionate selection method, also known as roulette wheel se-
lection, is used and through the simulation, the total number of
entities stays constant. This produces a simulation where low per-
forming strategies slowly die out, and high performing strategy’s
population sizes grow.

3.2 Strategies in the proposed simulation
In total, we implemented 20 strategies, 18 known ones and two of
our own. All strategies are listed below with their name, a corre-
sponding designation and a short description of their behaviour.

(1) Always Cooperate (ALLC): Always cooperates.
(2) Always Defect (ALLD): Always defects.
(3) CD: Alternates between cooperating and defecting.
(4) CCD: Alternates between cooperating twice and defecting

once.
(5) DC: Same behaviour as CD, but starts with defecting.
(6) Grim: Cooperates until the opponent defects and then al-

ways defects thereafter.
(7) Prober: Plays D, C, C in the �rst three rounds and based

on opponent’s moves, chooses his further behaviour. If the
opponent defected in round two and cooperated in round
three, the strategy defects forever, else it applies the TFT
strategy.

(8) Random (RAND): Cooperates with probability % (⇠) = 0.5.
(9) Probability ? Cooperator: Cooperates with �xed probability

% (⇠) = ? .

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

46

Iterated prisoner’s dilemma and survival of the fi�est from an ecological perspective

(10) Reactive (with parameters '(B, ?,@)): Cooperates with prob-
ability B in the �rst round and after that with probabilites
? and @, based on the opponents decision in the previous
round.

(11) Tit for Tat (TFT): Imitates its opponent’s previous move,
except in the �rst round when it cooperates.

(12) Tit for two Tats (TFTT or TF2T): Defects only if the oppo-
nent defected twice in a row.

(13) Two Tits for Tat (TTFT or 2TFT): Defects twice in a row if
the opponent defected in the previous round.

(14) Imperfect Tit fot Tat (ImpTFT): Same behaviour as TFT,
except that the probability for imitation is less than one.

(15) Suspicious Tit fot Tat (STFT): Same behaviour as TFT, ex-
cept that it defects in the �rst round.

(16) Win-Stay-Lose-Shift (WSLS), also known as Pavlov: Coop-
erates if it and the opponents previous move were equal,
else it defects [8, 11]

(17) n-Pavlov [7, 8]: Cooperates with probability ?= in round
=. The probability in the �rst round is ?1 = 1 and the
probability in round = + 1 is calculated based on the payo�
in round = as:

?=+1 =

8>>>>><
>>>>>:

?= + 1
= payo� in the last round was R

?= + 2
= payo� in the last round was T

?= � 1
= payo� in the last round was P

?= � 2
= payo� in the last round was S

(18) PavlovD: Same behaviour as Pavlov but defects in the �rst
round.

(19) My strategy simple (MSS): Cooperates the �rst 6 rounds,
after that it either randomly cooperates every second or
third move or plays as n-Pavlov.

(20) My strategy advanced (MSA): Plays as n-Pavlov. Addition-
ally, if the probability drops below 0.3 it has a chance, equal
to that probability, to forgive the opponent and cooperate
the next 2 or 3 moves.

Both of our implemented strategies are based on the n-Pavlov
strategy, and both exhibit the property of being nice.

4 EXPERIMENTS AND RESULTS
The implemented strategies were evaluated in a tournament similar
to the Axelrod’s �rst tournament and in a simulation, as explained
in the previous section of this paper. Both evaluation methods
were run multiple times, to avoid any bias introduced by strategies
leveraging randomness. The impact of the tournament length on
the �nal rankings of strategies was also tested. This section presents
the results achieved.

4.1 Results of the implemented tournament
We run two tournaments with lengths 50 and 1000 moves, each
1000 times, and used the average of the scores achieved to rank
the strategies. The results are collected in Table 2. In addition,
we divided the scores from the long tournament by 20 for easier
comparison with the short version scores.

1B = 0.5,? = 0.7,@ = 0.3

Table 2: Ranking of strategies in the tournament evaluation.
Rank #1 and score #1 present the results of the longer tour-
nament with 1000 moves played, and the rank #2 and score
#2 present the results from the shorter tournament with 50
moves played.

Rank #1 Rank #2 Score #1 Score #2 Name
1. 1. 2530 2532 Grim
2. 2. 2447 2459 TF2T
3. 3. 2414 2418 Pavlov
4. 4. 2407 2415 n-Pavlov
5. 5. 2405 2407 TFT
6. 7. 2317 2319 PavlovD
7. 9. 2314 2277 CCD
8. 6. 2303 2333 MSA
9. 12. 2270 2257 Random
10. 8. 2257 2280 DDC
11. 11. 2246 2258 CD
12. 10. 2230 2274 ALLD
13. 14. 2212 2222 '(B, ?,@)1
14. 15. 2199 2184 % (0.75)
15. 13. 2194 2241 ImpTFT
16. 16. 2152 2149 ALLC
17. 17. 2150 2147 MSS
18. 18. 2055 2089 STFT
19. 19. 2022 2051 Prober
20. 20. 1947 1992 2TFT

From the results we can observe, that the winning strategy from
Axelrod’s tournaments landed only on place 5. The similar Tit for
two Tats strategy performed better, placing second. As expected,
both the Pavlov and n-Pavlov strategies placed in the top 5. The
best score in both the short and long tournament, therefore placing
�rst, was achieved by the Grim strategy. This was a small surprise,
but after a more detailed look at the data, the results make sense
and are also expected. Grim scores well against nice strategies,
which are quite well represented in our tournament, and also takes
advantage of strategies that heavily rely on randomness or for-
giveness. Forgiving strategies are those that are still prepared to
cooperate even when the opponent has defected against them [8].
Grim defects from the next move his opponent defected till the
end, but the random and forgiving strategies will sometimes still
cooperate, which brings Grim the extra score to place �rst. One of
our strategies named My strategy advanced performed quite well,
placing 8th in the short tournament and 6th in the long tournament.
In comparison, My strategy simple placed only on the 17th place in
both tournaments. While one of them performed rather well, none
of them improved the n-Pavlov strategy on which they were based
on.

4.2 Results of the proposed simulation
The �rst scenario we tested was the e�ect the length of the tour-
nament has on the simulation’s behaviour and its �nal outcome.
The initial population size of each strategy was set to 100 members,
and we tested tournament lengths of 10 and 200 moves. The per-
formance was measured by the number of generations a speci�c

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

47

Martin Domajnko

strategy survived, before dying out and being completely removed
from the simulation. The best performing strategies, as observed
from the results, were the same as seen in Table 2 and there was
very little di�erence discovered between the tournament lengths
of 10 and 200 moves.

Our experiments continued with testing di�erent initial pop-
ulation sizes for the strategies and its e�ect on the results. This
also a�ected the total number of strategies playing against each
other and therefore the running time of the simulation. We tested
initial population sizes of 10 and 100 members for each strategy.
The results were almost identical to the ones produced while testing
di�erent tournament lengths.

After the initial experiments, we have also done some smaller
ones, where we tested the performance of our two strategies in
di�erent environments. One of the environments was a TFT based
environment, consisting only of the strategies based on the original
TFT strategy (TFT, TF2T, 2TFT, ImpTFT and STFT), and another
one was a Pavlov based environment, consisting only of (Pavlov,
n-Pavlov and PavlovD strategies). Although the scenarios looked
quite interesting, they didn’t produce any signi�cant results.

4.3 Discussion
An interesting behaviour found in a population of TFT strategies is
the ability to invade a population of ALLD strategies. Additionally,
a population of TFT strategies can’t be invaded by a population of
ALLD strategies. This was the �rst scenario we tested, and the re-
sults have shown, that none of our strategies exhibit that behaviour.
The same holds true for the n-Pavlov strategy which they are based
on.

One thing that all the experiments had in commonwas, that most
of the low performing strategies died out quickly. If the simulations
were run for enough generations, we also observed that eventually
one strategy took over and no other strategy was left. This led us
to a more detailed examination of the scores produced throughout
the simulation. We observed that initially the minimum scores
start dropping, and after the low performers die out, the minimum
scores start increasing, eventually converging with the average
and maximum scores. The strategies that drop out early are mostly
strategies that don’t fall into the nice category. Eventually all the
strategies left in the simulation exhibited the property of being nice
and therefore the only possible move was cooperation. From this
point onwards, the behaviour of the simulation was completely
based on the random generator controlling the selection process.

5 CONCLUSION
In this study, we presented two new strategies for playing the
iterated prisoner’s dilemma game and evaluated them on an im-
plementation similar to Axelrod’s original tournament and on our
own simulation. The results of the tournament have shown, that
one strategy performed quite well, while the other one performed
poorly, placing only on the 17th place out of 20. Additionally, none
of the two presented strategies outperformed the n-Pavlov strategy
which they were based on. Lastly, we observed that most strategies
dropped out of our simulation quite early and only a small number
of nice strategies were left. This lead to a scenario, where the only

played move was cooperation and the �nal outcomes were only
a�ected by the random generator controlling the selection process.

In the future, two possible improvements could be added to our
solution. One would be to increase the number of the implemented
strategies, and the second one would be to reduce the imbalance
between the number of strategies exhibiting the property of being
nice.

REFERENCES
[1] Robert Axelrod. 1980. E�ective Choice in the Prisoner’s Dilemma. The Journal

of Con�ict Resolution 24, 1 (1980), 3–25. http://www.jstor.org/stable/173932
[2] Robert Axelrod. 1980. More E�ective Choice in the Prisoner’s Dilemma. The

Journal of Con�ict Resolution 24, 3 (1980), 379–403. http://www.jstor.org/stable/
173638

[3] Robert Axelrod. 2012. Launching “The Evolution of Cooperation”. Journal of
Theoretical Biology 299 (2012), 21–24. https://doi.org/10.1016/j.jtbi.2011.04.015
Evolution of Cooperation.

[4] Robert Axelrod et al. 1987. The evolution of strategies in the iterated prisoner’s
dilemma. The dynamics of norms 1 (1987), 1–16.

[5] Robert Axelrod and William D. Hamilton. 1981. The Evolution of Cooperation.
Science 211, 4489 (1981), 1390–1396. http://www.jstor.org/stable/1685895

[6] R Dawkins. 1976. The Sel�sh Gene. Oxford University Press, Oxford, UK.
[7] David Kraines and Vivian Kraines. 1989. Pavlov and the prisoner's dilemma.

Theory and Decision 26, 1 (Jan. 1989), 47–79. https://doi.org/10.1007/bf00134056
[8] Steven Kuhn. 2019. Prisoner’s Dilemma. In The Stanford Encyclopedia of Phi-

losophy (Winter 2019 ed.), Edward N. Zalta (Ed.). Metaphysics Research Lab,
Stanford University.

[9] John Nash. 1951. Non-Cooperative Games. Annals of Mathematics 54, 2 (1951),
286–295. http://www.jstor.org/stable/1969529

[10] Abraham Neyman. 1985. Bounded complexity justi�es cooperation in the �nitely
repeated prisoners’ dilemma. Economics Letters 19, 3 (1985), 227–229. https:
//doi.org/10.1016/0165-1765(85)90026-6

[11] Martin Nowak and Karl Sigmund. 1993. A strategy of win-stay, lose-shift that
outperforms tit-for-tat in the Prisoner's Dilemma game. Nature 364, 6432 (jul
1993), 56–58. https://doi.org/10.1038/364056a0

[12] Glenn H. Snyder. 1971. “Prisoner’s Dilemma” and “Chicken” Models in
International Politics. International Studies Quarterly 15, 1 (03 1971), 66–
103. https://doi.org/10.2307/3013593 arXiv:https://academic.oup.com/isq/article-
pdf/15/1/66/5096260/15-1-66.pdf

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

48

Proc. of the 8th Student Computing Research Symposium (SCORES’22), Ljubljana, Slovenia, October 6, 2022

Index of Authors

——/ B /——
Bašić, Ina . 29
Božič, Janez . 1

——/ D /——
Domajnko, Martin . 37, 45
Džubur, Benjamin . 33

——/ G /——
Georgiev, Dejan . 41
Gottlieb, Eric . 29
Granda, Alen . 5

——/ J /——
Jonke, Žan . 17

——/ K /——
Kohek, Štefan . 5
Kordež, Jakob . 37
Krnc, Matjaž . 29

——/ L /——
Lahovnik, Tadej . 9
Lukač, Niko . 5

——/ M /——
Marolt, Marija . 1
Metličar, Samo . 25
Mihelič, Jurij . 25

——/ N /——
Nguyen, Quoc Toan . 13

——/ P /——
Perković, Andrej . 21
Petkovšek, Gal . 1
Podgorelec, Vili . 9, 13
Pur, Aleksander . 5

——/ T /——
Tošić, Aleksandar . 21
Trojer, Žiga . 33

——/ Z /——
Zrimšek, Urša . 33
Zupančič, Filip . 41

——/ Ž /——
Žabkar, Jure . 41
Žagar, Gal . 41

	Preamble
	Cover

	Conference Program
	Artificial Intelligence, Machine Learning, and Pattern Recognition
	Use of network features to improve 3D object classification
	Efficient machine learning based graph layout calculation for investigation platform
	Music genre classification based on spectrograms of the sound recording using an ensemble of CNNs
	Super-resolution method for reconstructing street images from surveillance system based on Real-ESRGAN

	Algorithmics and Theoretical Computer Science
	An analysis of time complexity and a discussion on interpretability for two methods of constructing social network graphs
	Empirical evaluation of sequential, parallel and distributed implementations of k-means clustering
	Exact exponential algorithms for the center closing problem
	Some observations on the column-row game

	Applications of Computer Science
	Semantic analysis of Russo-Ukrainian war tweet networks
	Performance evaluation of the SloBERTa and XML-RoBERTa transformer models on the Slovenian news corpus SentiNews 1.0
	Spletna aplikacija za analizo tapkanja s prsti
	Iterated prisoner's dilemma and survival of the fittest from an ecological perspective

	Index of Authors

