
Proceedings
of the 2014
1st Student
Computer
Science
Research
Conference

 University of Primorska Press

St
uC

oS
R

eC

StuCoSReC
Proceedings of the 2014 1st Student
Computer Science Research Conference

Edited by
Iztok Fister jr. and Andrej Brodnik

Reviewers and Programme Committee
Janez Brest, Chair ■ University of Maribor, Slovenia
Andrej Brodnik, Chair ■ University of Primorska and

University of Ljubljana, Slovenia
Iztok Fister, Chair ■ University of Maribor, Slovenia
Iztok Fister jr., Chair ■ University of Maribor, Slovenia
Zoran Bosnić ■ University of Ljubljana, Slovenia
Borko Bošković ■ University of Maribor
Mojca Ciglarič ■ University of Ljubljana, Slovenia
Simon Fong ■ University of Macau, Macau
Tao Gao ■ North China Electric Power University, China
Marjan Heričko ■ University of Maribor, Slovenia
Andres Iglesias ■ Universidad de Cantabria, Spain
Branko Kavšek ■ University of Primorska, Slovenia
Miklos Krecz ■ University of Szeged
Gregor Papa ■ Jožef Stefan Institute
Peter Rogelj ■ University of Primorska, Slovenia
Xin-She Yang ■ Middlesex University, United Kingdom
Borut Žalik ■ University of Maribor, Slovenia

Organizing Committee
Uroš Mlakar ■ University of Maribor, Slovenia
Jani Dogonik ■ University of Maribor, Slovenia

Published by
University of Primorska Press
Titov trg 4, si-6000 Koper

Editor-in-Chief
Jonatan Vinkler

Managing Editor
Alen Ježovnik

Koper, 2014

isbn 978-961-6963-03-9 (pdf)
www.hippocampus.si/isbn/978-961-6963-03-9.pdf
isbn 978-961-6963-04-6 (html)
www.hippocampus.si/isbn/978-961-6963-04-6/index.html

© 2014 Založba Univerze na Primorskem

Preface

Computer science is one of the quickest developing ar-
eas of Science. This area captures a lot of disciplines
that have been developed independently. Thus, new dis-
ciplines have been arisen. On the other hand, the com-
puter science starts connecting with the other natural
sciences in order to draw an inspiration for solving their
problems. Nowadays, incorporating principles from biol-
ogy (e.g., Darwinian evolution or behavior of social liv-
ing insects and animals) into the computer algorithms
have been observed. In general, this means enough ma-
terial for a computer science conference. This volume
contains papers as presented in the first Student Com-
puter Science Research Conference 2014 (StuCoSRec)
held in Maribor under the cover of the 17th MultiCon-
ference on Information Society in Ljubljana and ACM
Slovenia.

The 1st Student Computer Science Research Conference
is an answer to the fact that modern PhD and MSc pro-
grams foster early research activity among the students
of computer science. The prime goal of the conference is
to become a place for students to present their research
work and hence further encourage students for an early
research. Besides the conference, it also wants to estab-
lish an envi ronment where students from different insti-
tutions meet, let know each other, exchange the ideas,
and nonetheless make friends and research colleagues.
In line with this, we would like to exhibit research ef-
forts of students in four Slovenian institutions, i.e., Uni-
versity of Maribor, University of Ljubljana, University
of Primorska and Jožef Stefan international post-gradu-
ate school, neighboring countries, i.e., Austria, Croatia,
Hungary and Italy, and the other countries in the world
(e.g., one of the papers on out conference comes from
China). At last but not least, the conference is also
meant to serve as meeting place for students with senior
researchers from different institutions.

Eleven papers addressed this conference,1 covering sev-
eral topics of the computer science. All the papers were
reviewed by two international reviewers and accept-
ed for the oral presentation. This fact confirms a good
work with authors in their research institutions. The
content of the papers will be presented in three sections
that cover theory and applications, computer graphics,
image processing and pattern recognition, and semantic
web and data mining.

The conference is dedicated to graduate and un-
der-graduate students of computer science and is there-
fore free of charge. In line with this, the organizing
committee would like to thank to the University of
Maribor, especially the Faculty of Electrical Engineer-
ing and Computer Science (FERI) for the support. Es-
pecially, we are grateful to the Institute of comput-
er science at FERI Maribor for payment of conference
costs arising during the organization. At the end, a spe-
cial thank goes to the dean of UM FERI, prof. Borut
Žalik for his unselfish support.

1 Conference site is at http://labraj.uni-mb.si/stucosrec2014/.

CIP - Kataložni zapis o publikaciji
Narodna in univerzitetna knjižnica, Ljubljana

004(082)(0.034.2)

 STUCOSREC [Elektronski vir] : proceedings of the 2014
1st Student Computer Science Research Conference / edited
by Iztok Fister jr. and Andrej Brodnik. - El. knjiga. - Koper :
University of Primorska Press, 2014

Način dostopa (URL): www.hippocampus.si/isbn/978-961-6963-
03-9.pdf
Način dostopa (URL): www.hippocampus.si/isbn/978-961-6963-
04-6/index.html

ISBN 978-961-6963-03-9 (pdf)
ISBN 978-961-6963-04-6 (html)
1. Fister, Iztok, ml.
275792896

Contents

Preface II

Spatially Embedded Complex Network Estimation Using Fractal Dimension
■ David Jesenko, Domen Mongus, Borut Žalik 5–8

Graph Coloring Based Heuristic for Driver Rostering
■ László Hajdu, Miklós Krész, Attila Tóth 9–12

A New Heuristic Approach for the Vehicle and Driver Scheduling Problems
■ Viktor Árgilán, Balázs Dávid 13–17

Multi Population Firey Algorithm
■ Jani Dugonik, Iztok Fister 19–23

Monte Carlo Path Tracing with OpenCL
■ Andrej Bukošek 25–27

A Garlic Clove Direction Detection Based on Pixel Counting
■ Pavel Fičur 29–31

Simple Approach to Find Repeated Patterns in Opponents Texas Hold‘em No-limit Game
■ Gregor Vohl, Janez Brest 33–36

Histogram of Oriented Gradients Parameter Optimization for Facial Expression Recognition
■ Uroš Mlakar 37–41

Constructing Domain-specific Semantic Dictionaries to Supplement Domain-specific Knowledge
Bases
■ Goran Hrovat, Milan Ojsteršek 43–45

Am I Overtraining? A Novel Data Mining Approach for Avoiding Overtraining
■ Iztok Fister Jr., Goran Hrovat, Samo Rauter, Iztok Fister 47–52

An Improved Algorithm of DPM for Two-dimensional Barcode
■ Tao Gao, Xiao-cheng Du, Iztok Fister Jr. 53–56

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October III

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October IV

Spatially Embedded Complex Network Estimation Using
Fractal Dimension

David Jesenko
∗

University of Maribor
Faculty of Electrical

Engineering and Computer
Science

Smetanova 17, SI-2000
Maribor, Slovenia

david.jesenko1@um.si

Domen Mongus
University of Maribor
Faculty of Electrical

Engineering and Computer
Science

Smetanova 17, SI-2000
Maribor, Slovenia

domen.mongus@um.si

Borut Žalik
University of Maribor
Faculty of Electrical

Engineering and Computer
Science

Smetanova 17, SI-2000
Maribor, Slovenia

borut.zalik@um.si

ABSTRACT
This paper describes complex networks in regards to their
fractal characteristic. Firstly, a short background concern-
ing fractal dimensionality based on box-counting is consid-
ered, while in the continuation its application on spatially
embedded networks is proposed using rasterization at mul-
tiple scales. Finally, the obtained results are presented.

General Terms
Computer science, algorithms

Keywords
Complex networks, fractals, fractal dimension

1. INTRODUCTION
Today, complex networks are amongst the most advanced
approaches for describing and analyzing structures composed
of a plurality of blocks. When vertex has a fixed position in
space, we are talking about spatially embedded networks [1].
Similar to graphs, networks are represented by a set of ver-
tices and an unordered set of edges linking them. The main
difference between them is of topological nature. Complex
networks have nontrivial and unpredictable topology [2]. In
addition, topology of complex networks hide important in-
formation about vertices. Evaluation of these features can
reveal many otherwise hidden characteristics of geometric
structures as for example separation, connectedness, com-
pactness, or countability conditions [3].

With their characteristic self-similar property and huge amo-
unt of possibilities to analyse them, fractals are one of the
most interesting areas of computer science. Among various
dimensions that are extensively studied in the literature,

∗Corresponding author.

Peitgen et al. introduced three main Mandelbrot fractal
dimensions [4]:

• self-similarity dimension,

• compass dimension (also called divider dimension),

• box-counting dimension.

The box-counting dimension is the most frequently used in
computer-supported applications. The box-counting algo-
rithm uses a uniform grid with cell-size s1, where the num-
ber of grid-cells N1 containing the object is counted. Obvi-
ously, at an increased sampling scale s2, an increased value
of grid-cells containing structures N2 is expected. A fractal
dimension D, is then given by [5]:

D =
logN1 − logN2

log s1 − log s2
. (1)

Measuring fractal dimension with the box-counting algo-
rithm has been presented at various places. Conci and Proen-
ça in [6] used this method for visual inspection, which is
important part of quality control in textile industry. In [7]
Boshoff presented fast box-counting algorithm for determin-
ing the fractal dimension of sampled continuous functions.
Zhang et al. in [8] presented coarse iris classification using
box-counting algorithm to estimate fractal dimensions.

The actual fractals are difficult to be detected and evaluated.
Frequently, a definition of fractal dimension is used for this
purposes [4]. The dimension of fractals is usually smaller
than the space in which fractals are embedded. However,
the fractal dimension remains the same regardless of the res-
olution used for fractal dimensionality estimation. Although
this definition allows for identification of fractal geometry,
fractal dimension of topology is still not clearly defined [9].

In this paper we present an implementation of a box-counting
method for estimating fractal dimension of topology of spa-
tially embedded complex networks. Section 2 gives a short
theoretical background on complex networks. In Section 3,
a method for estimating fractal dimensions of topologies is
presented. Implementation details are given in Section 4.
Results are presented in Section 5, while Section 6 concludes
the paper.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 5

2. COMPLEX NETWORKS
Nature consists of many complex networks established over
various kinds of vertices with different relations. Obvious
examples are social networks, where vertices represent peo-
ple and edges defines different relations between them, e.g.
business, friendship, or family [10]. In all these cases, a net-
work N is defined by the set of vertices V (N) = {vi} and the
set of edges E(N) = {eij}, where eij = (vi, vj) represents a
pair of vertices vi, vj ∈ V (N).

2.1 Spatially embedded complex networks
Depending on the length of the edges between vertices, two
kinds of spatially embedded networks are known [11]: edges
can either exist only between the nearest neighbours, or they
may spend over the entire network. In all the cases, power
law distribution of edge lengths is given as [11]:

P (r) ∼ r−δ, (2)

where r is the distance between the vertices. Exponent δ
affects the network dimension as:

• if 4 < δ, dimension is equal 2, because the value of
P (r) is low.

• if 2 ≤ δ ≤ 4, dimension monotonous grows from 2→∞
with decreasing δ.

• if δ < 2, dimension converts towards infinity.

3. FRACTALS
Fractals are geometric objects, which cannot be described
by ideal or primitive geometric objects, like cubes, spheres,
triangles, or polygons. Usually they are related with recur-
sive operations on geometric objects and number sets [4].
These operations are mathematically straightforward, how-
ever the results are complex, with interesting and remark-
able properties. The most important property of fractals is
self-similarity [4]. Examples of this can be found in the Can-
tor set (Figure 1), Sierpinski triangle (Figure 2) and Koch
snowflake (Figure 3).

Figure 1: Cantor set.

Figure 2: Sierpinski triangle.

4. IMPLEMENTATION
First, an application for generating different kind of com-
plex networks has been developed. As explained in Section

Figure 3: Koch snowflake.

2, two types of spatially embedded networks exist. An ex-
ample of a network where vertices are connected with their
nearest neighbours is shown in Figure 4. For creating these
types of networks, an efficient method for searching near-
est neighbours, implemented in nano-flann library, available
in [12] has been used. It is based on approximate nearest
neighbours search algorithm introduced in [13]. In Figure
4, the brighter vertices are those with more edges than the
darker one.

Figure 4: Complex network containing edges to
their nearest neighbours.

When considering complex networks (as shown in Figure 5)
with edges spanning over the entire space, the implemen-
tation was based on similarity measurement of vertices (ac-
cording to a user-specified feature). Obviously, the construc-
tion of this type of network is significantly more expensive as
it demands comparison of each pair of vertices. This leads to
a quadratic time complexity, while approximate search for
the nearest neighbours can be achieved in logarithmic time
[14].

Figure 5: Complex network with edges over the
whole network.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 6

4.1 Box-counting algorithm
A double-step algorithm using only integer arithmetic was
used for the implementation of line rasterization with min-
imized oversampling. As proposed in [15], the method uses
the coding of changes in directions based on DDA (Digi-
tal Differential Analysis). In order to increase efficiency of
box-counting, the scales of both uniform superimposed grids
should be in the ration 1:2. In this approach each box from
a grid is subdivided into four boxes each of half the size in
the next grid. Equation for fractal dimension is now [4]:

logN(2−(k+1))− logN(2−k)

log 2k+1 − log 2k
= log2

N(2−(k+1))

N(2−k)
. (3)

The result uses the base 2 logarithm due to the factor by
which the box-count increases from one grid-level to the next
[4].

5. RESULTS
Implemented algorithm runs on a computer system with the
following configuration:

• processor Intel Core2 Quad CPU Q9550 with beat
2.83GHz,

• memory DDR3 of size 8GB,

• graphical card ATI Radeon HD 4600 Series with 1GB
video memory,

• operating system Windows 7 Pro - 64 bit.

Figures 6 and 7 shows spatially-embedded complex networks
superimposed on grids of two different scales. For practical
purposes it is often convenient to consider a sequence of grids
where the mesh size is reduced by a factor of 1/2 from one
grid to the next. In other words, if the number of boxes
counted increases by a factor of 2D when the box size is
halved, then the fractal dimension is equal to D. More in
[4].

Figure 6: Fractal superimposed with grid, where s =
1/20 width of superimposed grid.

In Table 1, fractal dimension calculated by Eqn. (1) at a
changing scale can be seen. Complex network was composed

Figure 7: Fractal superimposed with grid, where s =
1/40 width of superimposed grid.

of |V (M)| = 250 vertices and |E(M)| = 2554 edges. With an
increasing scale, CPU time is decreased. As seen, the box-
counting fractal dimension is practically stable. The varia-
tions can be assigned to the point-to-cell algorithm, which
approximate the complex network more accurately at larger
resolutions.

Table 1: Box-counting fractal dimension.
Cell size CPU time [ms] Fractal dimension

1/35 and 1/40 59.4 1.31
1/30 and 1/40 56.1 1.33
1/25 and 1/40 50.4 1.33
1/20 and 1/40 45.3 1.34
1/20 and 1/35 39.7 1.35
1/20 and 1/30 33.5 1.35
1/20 and 1/25 28.9 1.36
1/15 and 1/20 26.2 1.37

The spent CPU efficiency of the implementation regarding
different network size is given in Tables 2 and 3. The scales
used were 1/20 and 1/40 width of superimposed grid. As
expected, the larger networks demand longer time. Differ-
ences in CPU efficiency between both kinds of networks can
be noticed when comparing Tables 2 and 3. It is a conse-
quence of rasterization algorithm. Edges in networks, with
edges over the whole network, are in average longer and their
rasterization therefore take more time.

Table 2: Spent CPU time for evaluation of spatial
dimension with nearest neighbour edges.

Number of vertices Number of edges [millions] Time [s]
100 0.001 0.01
500 0.008 0.1
1000 0.04 0.3
5000 0.9 0.6
10000 3.6 1.1
25000 23.7 4.7
50000 92.1 18.2
75000 207.5 37.4

7StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October

Table 3: Spent CPU time for evaluation of spatial
dimension with edges over the whole network.

Number of vertices Number of edges [millions] Time [s]
100 0.0008 0.015
500 0.005 0.2
1000 0.03 0.45
5000 0.8 0.7
10000 3.1 1.3
25000 18.3 5.4
50000 79.8 23.8
75000 176.1 47.1

6. CONCLUSION
In this paper, a brief theoretical background on complex
networks and fractals (fractal dimension) has been given at
first. The implementation of the box-counting algorithm for
evaluation of fractal dimension of spatially embedded com-
plex networks follows. The efficiency of the implementation
is given for two types of complex networks.

7. REFERENCES
[1] L. Barnett, E. Di Paolo, and S. Bullock. Spatially

embedded random networks. Physical Review E,
76(5):056115, 2007.

[2] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and
D. U. Hwang. Complex networks: Structure and
dynamics. Physics reports, 424(4):175–308, 2006.

[3] R. Engelking. General topology. 1989.

[4] H.O. Peitgen, H. Jürgens, and D. Saupe. Chaos and
fractals: new frontiers of science. Springer, 2004.

[5] B.S. Raghavendra and N.D. Dutt. Computing fractal
dimension of signals using multiresolution
box-counting method. International Journal of
Information and Mathematical Sciences, 6(1):50–65,
2010.

[6] A. Conci and C. B. Proença. A fractal image analysis
system for fabric inspection based on a box-counting
method. Computer Networks and ISDN Systems,
30(20):1887–1895, 1998.

[7] H. F. V. Boshoff. A fast box counting algorithm for
determining the fractal dimension of sampled
continuous functions. In Communications and Signal
Processing, 1992. COMSIG’92., Proceedings of the
1992 South African Symposium on, pages 43–48.
IEEE, 1992.

[8] L. Yu, D. Zhang, K. Wang, and W. Yang. Coarse iris
classification using box-counting to estimate fractal
dimensions. Pattern Recognition, 38(11):1791–1798,
2005.

[9] O. Shanker. Defining dimension of a complex network.
Modern Physics Letters B, 21(06):321–326, 2007.

[10] M. Aldana. Complex networks. Available on:
http://www.fis.unam.mx/ max/English/notasredes.pdf,
2006.

[11] L. Daqing, K. Kosmidis, A. Bunde, and S. Havlin.
Dimension of spatially embedded networks. Nature
Physics, 7(6):481–484, 2011.

[12] Nano-flann. Available on:

https://code.google.com/p/nanoflann.

[13] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman,
and A. Y. Wu. An optimal algorithm for approximate
nearest neighbor searching fixed dimensions. Journal
of the ACM (JACM), 45(6):891–923, 1998.

[14] J. L. Bentley. Multidimensional binary search trees
used for associative searching. Communications of the
ACM, 18(9):509–517, 1975.

[15] Yong Kui Liu, Peng Jie Wang, Dan Dan Zhao, Denis
Spelic, Domen Mongus, and Borut Zalik. Pixel-level
algorithms for drawing curves. In Theory and Practice
of Computer Graphics, pages 33–40. The Eurographics
Association, 2011.

8StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October

Graph coloring based heuristic for driver rostering

László Hajdu
University of Szeged
Dugonics square 13.

Szeged, Hungary
hajdul@jgypk.u-

szeged.hu

Miklós Krész
University of Szeged
Dugonics square 13.

Szeged, Hungary
kresz@jgypk.u-

szeged.hu

Attila Tóth
University of Szeged
Dugonics square 13.

Szeged, Hungary
attila@jgypk.u-szeged.hu

ABSTRACT
Nowadays, the companies and institutions have numerous
employees therefore the crew rostering problem became in-
creasingly important. The objective is to assign the crew
members to previously generated daily shifts, while meeting
the constraints, and to optimize the overall cost. In this pa-
per we present the mathematical model of the problem and
introduce a two-phase graph coloring method for the crew
rostering problem. Our method has been tested on artifi-
cially generated and real life input data. The results of the
new algorithm have been compared to the solutions of the
appropriate integer programming model for problems with
moderate size.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
H.4.2 [Types of Systems]: Decision support(e.g., MIS)

General Terms
Algorithms, Management, Measurement, Performance

Keywords
Driver rostering, Graph coloring, Tabu Search

1. INTRODUCTION
The crew rostering appears in various areas. The main chal-
lenge is to assign an optimal number of crew members to the
pre-defined daily shifts in a way where the resources are used
in the most efficiently way, meanwhile, the solution meets
the defined constraints of the workplace. It can be stated
that it is possible to use the model in every sector which
deals with crew members. Some of the typical application
areas where the crew rostering can be applied: public trans-
port companies, call centers, and nurse scheduling. The vari-
ations of the problem are NP-hard or NP-complete therefore
extremely hard to solve. [8, 1, 10]

In most cases the length of the shifts are different, which

means that the employees don’t spend the same amount of
time working. These differences may produce an overtime
cost which is added to the basic salary. However, the com-
panies and institutions must guarantee the basic salary for
everyone, even if the employee does not spend the normal
amount of time at work. This causes an additional cost for
the companies.

In this paper we define our crew rostering problem, intro-
duce the mathematical model and give our new heuristic
solution for the problem. The results of the algorithm have
been compared to the results of the appropriate integer pro-
gramming model for problems with moderate size. These
results show that our algorithm is very efficient for solving
this problem. Our solution is provided for the driver ros-
tering problem, although it can be utilized in crew rostering
within a wider range of propositions.

2. CREW ROSTERING
The problem is based on generalized set covering model.
Dantzig was the first to deal with its mathematical appli-
cation[4]. The literature gives numerous examples of the
issue. The most significant ones are the airline [5], the call
center[12], the nurse scheduling [3] and the driver schedul-
ing, what is the topic of our research. Since giving an ex-
act solution to these problems is only possible by moderate
sample size, thus these are solved usually with heuristics.
Several solutions can be found in the literature, such as: ant
colony optimization, dynamic programming, genetic algo-
rithm, simulated annealing or tabu search method. A good
overview of the above methods with respect to driver ros-
tering can be found in [11].

Our crew rostering problem is formally defined as the follow-
ing. Let c be the set of employees. A set of shifts denoted
by S needs to be carried out. A shift is composed of a series
of tasks. A shift is defined by its date, starting and ending
time, duty time, and its working time. The working time can
be different from the duty time because of breaks or idle ac-
tivities. Our objective is to assign the crew members to the
shifts. Consequently let f = s→ c an assignment where the
shifts are covered by the employees in a way where there is
a person assigned to every shift. These solutions need to
correspond the regulations of the company as well as the
norms of the european union. For example, that the crew
members can get at most one shift in one day. Besides this,
the following attributes were regulated during this problem:

9StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October

• Minimum rest time between two shifts.

• Maximum worktime during one week.

• Minimum free days in one month.

• Maximum consecutive workdays.

The aim is to give a solution which meets the regulations
above, while minimizing the cost. Let ct(i) be the type of
contract belonging to driver i. For any contract type c, let
aw(c) return the expected daily working hours that belong
to c. Each driver i has such a contract that defines his
required daily working time in average. Based on their con-
tract it is possible to calculate the expected worktime in the
planning period. In our case every crew member had a con-
tract with eight hours of worktime. The expected worktime
could be defined the following way:

expected worktime = number of workdays ∗ aw(ct(i))

The employee needs to be paid based on their expected work-
time written in their contract. Also, in the case of working
over the expected worktime, the employers have to pay extra
for this overtime. The optimal case is when every employee
works in their expected worktime. Therefore, the cost is the
following:

cost = α ∗ overtime+ β ∗ employment cost

Where α, β are weights. Hence the objective was that the
overtime is as low as possible while the number of the em-
ployees is minimal.

3. MATHEMATICAL MODEL
Let D be the days of the planning period, DWeek the days of
the week and DMon is the days of a months. Meanwhile the
lenght of the planning period needs to be defined denoted
by L, and let Lm the number of days in the months denoted
by m. Furthermore let j and p (j ∈ D, p ∈ D) the days
and w the weeks. The set of the drivers are denoted by C,
and let S be the shifts where Sj is a shift on day j. Let i
(i ∈ C) the driver i and k and q (k ∈ Sj , q ∈ Sj) one shift
each. SSjk

pq is a compatibility relation, which takes up the
value of 1 if the shift k on day j and shift q on day p can
be assigned to the same person, and 0 otherwise. Let WT
be the maximal worktime on a week, WD the maximum
number of consecutive workdays and DWD

p the consecutive
days beginning from day p (WD+1). The maximum number
of free days is denoted by RD. For every driver a worktime
being defined in the contract is needed. Let this worktime
be ct(i,m). In order to be able to minimize the number
of employees let define cc(i) as the operational cost. Let
wt(j, k) be and st(j, k) be the worktime and the duty time
of every shift k on every day j. Finally let ET be the value
used by multiplying the overtime.

We needed the followings in order to be able to define the
model:

Driver i gets shift k on day j:

xijk ∈ {0, 1}

Driver i works on day j:

zij ∈ {0, 1}

Driver i works in the planning period:

yi ∈ {0, 1}

Overtime of driver i:

πi ≥ 0

The constraints of the appropriate integer programming model
were the followings:

Every driver needs to be assigned to exactly one shift.

∀j∀k
∑
i

xijk = 1 (1)

A driver only works on a certain day if there is a shift as-
signed to them and only one person can be assigned to a
shift.

∀i∀j
∑
i

xijk = zij (2)

A driver is employed if they are working in the planning
period.

∀i
∑
j

zij ≤ Lyi (3)

The following constraint excludes the possibility of assigning
two incompatible shifts to a driver.

∀i∀j∀p∀k∀qxijk + xipq ≤ SSjk
pq + 1 (4)

The worktime should not exceed the maximum working time
in a week.

∀i∀w
∑

j∈D
W eek
W

∑
k

xijkwt(j, k) ≤WT (5)

A driver can only have the maximum consecutive shifts.

∀i∀p
∑

j∈DWD
p

zij ≤WD (6)

At least the required free days need to be given in a month.

∀i∀m
∑

j∈DMon
m

zij ≤ Lm −RD (7)

Let define the overtime.

∀i
∑
m

(
∑

j∈DMon
m

∑
k

xijkwt(j, k)− ct(i,m)) ≤ πi (8)

The objective function minimizes the sum of the overtime
and the operational cost.

min
∑
i

(ETπi + yicc(i)) (9)

10StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October

4. HEURISTIC METHOD
The algorithm is a two phase heuristic method based on
graph coloring. M. Gamache et. al [7] developed a method,
where graph coloring algorithm based tabu search was used
for scheduling pilots. This gave the idea for our problem
where the rules being discussed above had to be met. Be-
sides the solution had to match the important aspects of the
driver rostering. The heuristic has the following steps:

4.1 Initial steps
4.1.1 Set of employees

We can give an estimation for the number of employees for
the problem using the worktime of the shifts and the con-
tracts of the workers. Using this, a lower bound for the
total overtime can be calculated. The lower bound of the
algorithm depends on the number of the employees and the
working time. The number of the crew members is the fol-
lowing:

C = round(
global worktime

contract type
)

It is important to note that a trivial lower bound for the
number of employees can also be given by the number of the
shifts on the busiest days, since one crew member can have
at most one shift a day.

4.1.2 Days-off patterns
A days off patterns defines the fixed free days for an em-
ployee. For scheduling the free days of the employees, in
many cases days off patterns are used for the heuristic solu-
tions of crew rostering [6]. We propose a 6-1 days-off pattern,
which means that the workers get one day off after every six
workdays. This pattern meets both of the minimal free days
and the maximal consecutive workdays, and causes only a
few exclusion during the graph coloring, and the tabu search
will have a relatively big state space.

4.1.3 Graph Building
Let every shift in the planning period be a vertex of a graph.
There is an edge between two vertices if the shifts repre-
sented by the two linked vertices cannot be performed by
the same person. This way every day is a clicque and there
are additional edges between the clicques because of the rest
time constraint.

4.2 Graph Coloring
During graph coloring each color mean one of the drivers.
The initial estimation was usually correct but some input
with too short of a worktime might have result that the
graph can not be colored with the given number of colors.
Therefore the algorithm had to be able to bring in new col-
ors. The DSATUR algorithm gave a proper solution for the
coloring, whereabout the article of Brelaz [2] written in 1979
writes in details. In this case the algorithm was modified by
using the set of employees estimated during the graph col-
oring. Consequently a k-coloring was made in a way where
adding a new color is possible. The graph coloring gives
an initial solution which meet the given constraints and as-
signe every shift to a driver. As we know the duration of

the shifts every person’s worktime could be calculated for
the initial solution. This way, since the real working time
of each driver and their expected worktime were known, an
initial cost could be calculated for the solution.

4.3 Tabu Search
The tabu search was introduced by Glover in 1986 and it
is one of the most famous local search techniques nowadays
[9]. The state space of the tabu search consists every feasi-
ble coloring, and every state is a coloring. Let SL be all of
the possible solutions of the graph coloring. The objective
function had to be minimized in SL. Every sl ∈ SL pos-
sible solution has a neighbourhood denoted by N(sl). The
algorithm visits sl0, sl1, ...sln solutions during the runtime
where sl0 is the initial solution produced by the graph col-
oring, and sli+1 ∈ N(sli). The next neighbour is chosen by
first fit method. This means that the first neighbour solution
being better than the actual solution is chosen. Neighbour-
hoods chosen in one step are stored in the tabu list denoted
by TL. The steps in the list are not being performed for a
time. The N(sl) set of neighbours of the sl solution can be
defined by using the following neighbourhoods:

1. Recoloring of a vertex: During this step a new color is
given to a vertex of the graph. Meaning that a shift
is taken a way from a driver and given to another one
who is able to perform the task while keeping the con-
straints. Shifts are taken away from the drivers having
the most overtime and given to the ones having under-
time.

2. Swapping the colors of two vertices: During the swap,
the colors of two vertices are switched, therefore shifts
between two drivers are swapped in a way where both
of them receives a shift which they can carry out keep-
ing the constraints. Usually this happens between the
drivers having the most overtime and the ones having
undertime.

After carrying out the vertex recoloring or the vertex swap-
ping, the step is added to the tabu list. Multiple methods
can be applied as a stopping criteria. In most cases the prac-
tice uses criteria based on iteration number or time bound.
In our case a stopping criteria was defined where the al-
gorithm stops if it can not find a better solution within a
certain number of iteration.

5. TEST RESULTS
The solutions of the heuristic method were compared to the
appropriate integer programming’s solutions using a rela-
tively small input (a maximum daily shifts of 50). The algo-
rithm was implemented in Java language and IBM Cplex
software was used during solving the appropriate integer
programming. Throughout the testing the following, typ-
ical basic regulations were used:

• The minimum rest time between two shifts is 12 hours.

• The worktime should be less than 48 hours during one
week.

• Employees should have at least 4 free days in one
month.

11StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October

• The number of the maximum consecutive workdays is
6.

In our case every employee had a contract with 8 hours of
worktime. Artificially generated and real life inputs were
used in the test with one month planning period. The inputs
being used during the test had a worktime between 7 and
9 hours, and the duty time between 6 and 10 hours. While
solving the problem, the objective function is divided into
two parts. The first is the set of people which is estimated
in the initial phase, while the minimization of the overtime
is considered during the tabu search. The tables below show
the under- and overtime by optimal employee number and
the maximum amount of daily shifts being 25. The results
by the input size being 50 and by real input are listed below
as well.

Table 1: Test results on generated inputs

Input
Lower
bound

Time
IP

Cost
IP

Time
heur

Cost
heur

gen25 1 4807 18.77 4900 3.2 4807
gen25 2 4658 495.2 4691 3.6 4658
gen25 3 1825 154.8 1855 4.1 1825
gen25 4 4371 22.96 4457 3.1 4371
gen25 5 4815 18.11 4911 5.4 4815

The stopping criteria of the algorithm was given to stop
when it could not find a better solution after 200 iteration,
or there were only drivers with under- or overtime left.

Table 2: Test results on generated inputs

Input
Lower
bound

Time
IP

Cost
IP

Time
heur

Cost
heur

gen50 1 3359 875.1 3465 5.4 3359
gen50 2 2581 844.8 2581 15.2 2581
gen50 3 3000 1102.34 3047 10.4 3000
gen50 4 1671 1252.78 1696 4.8 1671
gen50 5 1925 1529.56 1960 10.3 1925

The real examples belonged to the database of the Tisza
Volan and consisted the local trips, shifts and the drivers in
Szeged. The real input consisted approximately 3000 shifts
and the employees had a maximum number of 200 during
the solution. The results of the real input were tested with
appropriate integer programming model, but there was no
solution by the 2 % gap. The best results can be seen in the
following table.

Table 3: Test results on real life input

Input
Lower
bound

Time
IP

Cost
IP

Time
heur

Cost
heur

volan 4897 21418.56 5012.87 9.87 4897

The test results show that the task could be solved with
the set of estimated number of employees in every case. We
obtained that our algorithm is able to handle relatively large
inputs, and in the majority of the test cases, it has reached
the theoretical lower bound with producing a satisfactory
running time, and it produced a feasible solution in all cases.

6. CONCLUSION AND FUTURE WORKS
The important aspects of the crew rostering in the schedul-
ing of bus drivers were introduced above. We proposed a
two-phase graph coloring method for crew rostering. In the
first step, a graph was built and colored, while in the second
step, the graph was recolored with the tabu search method
by our algorithm. In the majority of test cases, the algo-
rithm has reached the theoretical lower bound. Our method
has been tested with artificially generated and real inputs.
For moderate size problems, the results of the new algorithm
have been compared to the solutions of the appropriate in-
teger programming model. The heuristic produced a satis-
factory running time, reached the lower bount in most cases
and returned a feasible solution in all cases. In the future the
running time could be improved with paralell programming.
In addition, the ability of handling drivers with different
kind of contracts with the heuristic would be desired.

7. ACKNOWLEDGEMENT
This work was partially supported by the European Union
and the European Social Fund through project Supercom-
puter, the national virtual lab (grant no.: TAMOP-4.2.2.C-
11/1/KONV-2012-0010).
I would also like to thank the Tisza Volan for the test data
and the technical consultation.

8. REFERENCES
[1] J. Bartholdi. A guaranteed-accuracy round-off

algorithm for cyclic scheduling and set covering.
Operation Research, 29:501–510, 1981.

[2] D. Brélaz. New methods to color vertices of a graph.
22(4):251–256, Apr. 1979.

[3] S. R. D. Sitompul. Nurse scheduling models: a
state-of-the-art review. J. Soc. Health Syst.,
7:441–499, 2004.

[4] G. Dantzig. A comment on edies traffic delays at toll
booths. Operations Research, 2:339–341, 1954.

[5] K. M. M. H. Dowling, D. and D. Sier. Staff rostering
at a large international airport. Annals of Operations
Research, 72:125–147, 1997.

[6] M. Elshafei and H. K. Alfares. A dynamic
programming algorithm for days-off scheduling with
sequence dependent labor costs. J. of Scheduling,
11(2):85–93, Apr. 2008.

[7] M. Gamache, A. Hertz, and J. O. Ouellet. A graph
coloring model for a feasibility problem in monthly
crew scheduling with preferential bidding. Comput.
Oper. Res., 34(8):2384–2395, Aug. 2007.

[8] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[9] F. Glover and M. Laguna. Tabu Search. Kluwer
Academic Publishers, Norwell, MA, USA, 1997.

[10] D. Marx. Graph colouring problems and their
applications in scheduling, 2003.

[11] K. Nurmi, J. Kyngäs, and G. Post. Driver rostering
for bus transit companies. Engineering Letters,
19(2):125–132, December 2011.

[12] S. O. T. R. T. Grossman, D. Samuelson. Call centers.
Technical Report, Haskayne Sch. Business,Univ.
Calgary, 1999.

12StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October

A New Heuristic Approach for the Vehicle and Driver
Scheduling Problems

Viktor Árgilán
University of Szeged

Árpád tér 2.
Szeged, Hungary

gilan@jgypk.u-szeged.hu

Balázs Dávid
University of Szeged

Boldogasszony sgt. 6.
Szeged, Hungary

davidb@jgypk.u-szeged.hu

ABSTRACT
Both vehicle and driver scheduling, the two main problems
in the optimization of public transport, are NP-hard. Be-
cause of this, finding an exact solution for a real-life instance
is usually not possible. As a result, research of this field is
concentrated on developing efficient heuristic solution meth-
ods for these problems. Balogh and Békési give a method to
create driver schedules based on an existing vehicle schedule.
However, the running time of their algorithm is large. In this
paper, we examine the possibility of a heuristic acceleration
technique, which is tested both on randomly generated and
real data.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms
Theory

Keywords
Vehicle schedule, driver schedule, sequential approach, com-
bined approach

1. INTRODUCTION
Cost reduction is important for public transport companies,
and this can mostly be achieved by reducing operational
costs. These costs are derived from the long-term schedules
created by the company. These are then executed on a daily
basis. The optimization of these schedules is a difficult prob-
lem, which is based on the pre-determined timetable of the
company. The timetable consists of trips, which are carried
out on a fixed route. There are two main problems connected
to the trips: vehicle and driver scheduling. Vehicle schedul-
ing gives the duties that different vehicles have to execute,
while driver scheduling defines the shifts that driver carry

out. Both problems are NP-hard, and literature usually of-
fers two different approaches for their solution: sequential
or combined. The operational costs of the company come
from the combined costs of the above two problems, which
leads to a complex optimization task.

The aim in both cases is to create schedules where are trips
are executed exactly once. The sequential approach creates
a feasible vehicle schedule as a first step, and then uses this
to as a basis for driver schedules, if it is possible. The com-
bined method aims to solve both problems in one step. This
would mean that the combined method can provide an op-
timal solution, but the size of the problem is usually too
big to handle. On the other hand, while the solution given
by the sequential method most likely will not be optimal,
the problem can be handled more easily in two steps. Both
the vehicle and driver scheduling problems are NP-hard [2],
which makes it difficult to solve real problems with a large
number of trips. This lead to a research into different heuris-
tics for these problems, for example in [9, 11]. Using the idea
found in [7], Balogh and Békési propose a sequential solution
algorithm for the problem in [1]. We introduce a heuristic
acceleration technique that can speed up the running time
of their algorithm.

In this paper, we first give a overview of the vehicle and
driver scheduling problems, then briefly overview their se-
quential application. After this, we introduce our heuristic
method, which we apply to the solution methodology pro-
posed in [1]. We present the efficiency of our heuristic both
on random and real instances.

2. THE VEHICLE AND DRIVER SCHEDUL-
ING PROBLEM

Related works for the vehicle scheduling problem concern
two different groups, depending on the types of available ve-
hicles and the geographical location of the depots. The sin-
gle depot vehicle scheduling problem (SDVSP) has a single
vehicle type, and every vehicle starts at the same geographi-
cal location. This problem can be solved in polynomial time.
If there are more vehicle types or starting geographical lo-
cations, then the problem has at least 2 depots. This case is
called a multiple depot vehicle scheduling problem, which is
NP-hard [2]. Vehicle scheduling problems arising in the real
world usually belong to this group.

The vehicle scheduling problem assigns vehicles to the timetabled
trips, so that the following criteria are met:

13StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October

• Every trips has to be executed exactly once.

• Every trip is compatible with the depot and vehicle
type of its assigned vehicle.

• Each trip ti and tj assigned to the same vehicle have
to be compatible. Two trips ti and tj are compatible,
if they can be served by the same vehicle type, and
there is enough time between the arrival time of ti and
the departure time of tj for the vehicle to travel from
the arrival location of ti to the departure location of tj .
Such a vehicle journey (without executing a timetabled
trip) is called a deadhead trip.

• The problem wants to minimize the arising cost, which
is usually the combination of two main components:

– a daily cost for each vehicle, if it leaves its depot
to execute a trip,

– and a travel cost for each vehicle, which is pro-
portional to the travelled distance.

Many different mathematical models can be given for the
vehicle scheduling problem. For an overview of the possible
representations, refer to [3].

Driver scheduling is also a main problem in public transit,
because personell give a high percent of the operational costs
of a company.

The problem considers a set of driver tasks (which are mainly
the timetabled trips), and the aim is to return driver shifts,
which represent a sequence of the tasks. Similarly to vehicle
scheduling, every task has be assigned to a shift exactly once,
and the tasks belonging to the same shift have to be com-
patible. The most important constraints for driver schedules
are defined by the European Union, but companies usually
define their own set of rules also. The most important of
these constraints are:

• maximum working hours,

• total length of the daily break(s),

• and the number and length of the breaks.

Mathematical formulation of the problem is usually given by
set partitioning or a set covering relaxation. These problems
are known to be NP-hard [6]. For an overview of the existing
models and methods, refer to [5].

3. SOLUTION WITH COLUMN GENERA-
TION

Balogh and Békési give a sequential solution method for ve-
hicle and driver scheduling in [1]. Their methodology is
strongly based on the ideas of Gintner et al. [7] and Steinzen
et al. [10]. This method considers an arbitrarily given vehi-
cle schedule, and uses this as an initial step to construct the
driver schedule.

As we mentioned earlier, set covering is one of the usual
approaches to model this problem. We give a 0-1 integer

programming model for this problem, which is originally pre-
sented in [1]:

∑
d∈D

∑
k∈Kd

cdkx
d
k (1)

∑
d∈D

∑
k∈Kd(t)

xd
k ≥ 1for∀t ∈ T (2)

xd
k ∈ 0, 1, d ∈ D, k ∈ Kd (3)

where

• T is the set of timetabled trips,

• D is the set of depots,

• Kd is the set of possible driver schedules from depot
d,

• Kd(t) is the set of driver schedules covering trip t from
depot d,

• cdk is the cost of schedule k from depot d.

The main problem of is model is that the number of pos-
sible driver schedules is high, and generating all of them is
usually not possible. To address this problem, the column
generation method in [4] is applied, generating new columns
using the time space network model in [8]. However, the
running time of this method is still large.

4. THE PROPOSED HEURISTIC
As we mentioned at the end of the last section, running
time of the above method is still an issue: it can be as big as
several days. This running time might not be acceptable for
a solution method applied in practice. Our aim is to develop
a method that decreases the size of the problem itself, and
results in a model with a smaller number of variables, which
is easier to solve.

Figure 1: Traffic load of a sample problem

The decrease in size is achieved by the following method:
consider the timeline of the daily traffic load as our plan-
ning period, which is defined by the timetabled trips. This
planning period starts with the earliest trip departure time,

14StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October

Figure 2: An interval division of the problem

and ends with the latest trip arrival time. An example for
this can be seen in Figure 1.

We divide the planning period into smaller, fixed-length in-
tervals. The heuristic will consider these sequentially, start-
ing with the earliest interval. An example for such a division
can be seen in Figure 2.

The aim of the heuristic is to decrease the number of trips in
the input, which is achieved by merging more trips together,
which are then considered as a single trip. First, as we
mentioned earlier, we divide our planning period into smaller
intervals of equal size t. The number k of dividing points
needed for this can be calculated by

k =
(max{arrival timetrip}−min{departure timetrip})

t

Using these dividing points, we partition the trips of the in-
put into sets Si (1 ≤ i ≤ k). A set Si contains the trips that
depart in the time interval defined by its dividing points.
The set Sk will contain trips starting after the last dividing
point k. It is possible, that there are only arriving trips,
and no trips are departing after time k, which will result in
Sk = ∅. Naturally,

Si

⋂
Sj = ∅ if i 6= j

and
k⋃

i=1

Si = S

Our heuristic aims to solve the vehicle scheduling problem
sequentially for every interval Si. An arbitrary solution
method can be used for this. As the newly merged trips
act more like the pieces of a shift, each trip t is assigned a
number dbt, which represents the number of driver breaks
that can be carried out between its sub-trips. Naturally, this
value will be 0 for normal trips, but it can be positive for
merged trips.

The vehicle scheduling problem is solved for the trips belong-
ing to set S1. This will result in a series of vehicle duties,
each such duty consisting of at least one trip. The trips of
a duty will be merged together to form a new trip. The
departure time and location of this new trip will correspond
to that of the first trip of the duty, and the arrival time and
location will be defined by the last trip of the duty.

As one of the most important driver rules is the assignment
of breaks, we also have to check if there is enough idle time
between the tasks of a vehicle duty to assign a break. If
there is such a possibility, then dbt = 1 for a merged trip t.
These newly constructed trips will be added to a set M .

The heuristic continues sequentially with the sets Si (1 <
i ≤ k). For each step i, the vehicle scheduling is carried out
on the set Si∪M . After the scheduling is completed, a newly
merged trip t defined by a driver duty will have dbt =

∑
t′

db′t,

where t′ are the trips of the duty. If there is enough time for
and additional driver break in the new duty, dbt is further
increased by 1. Set M will be then updated to only contain
the trips defined by this new duty.

We explain the algorithm on the example given in Figure 3,
where the set of trips is given for the problem over a timeline.

Figure 3: Input of the problem

Suppose that the first dividing point for the heuristic will
be at k1. We will only consider trips starting before k1, as
can be seen in Figure 4.

Figure 4: First iteration of the algorithm

The vehicle scheduling problem is solved for these trips, and
some of them are merged together, forming the new trips of
set M . The merged trips that come as a result of the first
phase can be seen in Figure 5

Figure 5: Merged trips after the first iteration

Using these newly created trips, we now advance to the sec-
ond iteration, which has the dividing point k2. This iteration

15StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October

considers the original trips departing between k1 and k2, to-
gether with the newly merged trips of set M . This can be
seen in Figure 6.

Figure 6: Second iteration of the algorithm

The vehicle scheduling problem is once again solved for the
trips, and the resulting vehicle duties are merged into single
trips. The results of this iteration can be seen in Figure 7.

Figure 7: Merged trips after the second iteration

The results in Figure 7 also present the consideration of
driver breaks. One of the merged trips has enough time
for a break (colored green in the figure). As a result, the
possibility of the break is noted by the assigned variable.

The pseudo-code of the algorithm can be seen in Algorithm
1. The algorithm first calculates the dividing points and as-
signs trips to every set Si, then sequentially solves the vehi-
cle scheduling problem for these sets. The possible number
of driver breaks is calculated using the method described
above.

5. COMPUTATIONAL RESULTS
We tested the above size reduction heuristic on both ran-
domly generated and real-life data provided by Tisza Volán
Zrt, the bus company of the city Szeged, Hungary. The
data we used was the same that Balogh and Békési used for
testing in [1]. The tests run on the following computer:

• Processor: Intel Core I7 X980 3.33 Ghz,

• Memory: 12Gb,

• Operation System: Microsoft Windows 7 Ultimate 64bit

Table 1: Test results of heuristic method
Problem Trips Vehicles Drivers Running time

#1 100 5 9 69min
#2 900 39 65 264min
#3 2711 105 231 4989min

Algorithm 1 Heuristic Size Reduction.

1: procedure SizeReduce(S, t, B, p)
2: M=∅
3: k =

(max{arrival timetrip}−min{departure timetrip})
t

4: for i = 0 to k do
5: if i ∗ t < arrival timetrip ≤ (i + 1 ∗ t) then
6: dbtrip = 0
7: trip⇒ Si

8: end if
9: end for

10: for i = 0 to k do
11: X = M

⋃
Si

12: M ′ = solve vehicle scheduling for X
13: for j = 1 to m’ do
14: Merge tasks on duty j to a single trip
15: Calculate dbj
16: end for
17: M = M ′

18: end for
19: end procedure

Table 1 presents our results, while we present their solutions
in Table 2 as a comparison. The driver rules we considered
were the ones in practice at the transportation company.

Table 2: Test results from [1]
Problem Trips Vehicles Drivers Running time

#1 100 5 9 81min
#2 900 38 62 362min
#3 2711 103 224 6616min

It can be seen in the last column that the running time of
the new method is smaller, even for large examples. Our
new heuristic is faster for every instance than the old one.
However, it can also be seen in the third and fourth column
that the number of vehicles and drivers given by our method
are higher in every instance, which results in a larger cost.
As we expected, the heuristic managed to speed up the so-
lution process significantly, but it produces solutions with a
higher cost.

6. CONCLUSION AND FUTURE WORKS
This is a heuristic acceleration of an earlier method. (of
Balogh and Bekesi). It produces less running time and a bit
higher cost, but the gap between the value of our solution
and the optimal value is small. As a future work, we plan
to apply a new matching based method instead of greedy
heuristic. And we plan to examine other heuristics as well.

7. ACKNOWLEDGEMENT
This work was partially supported by the European Union
and the European Social Fund through project Supercom-
puter, the national virtual lab (grant no.: TAMOP-4.2.2.C-
11/1/KONV-2012-0010).

8. REFERENCES
[1] J. Balogh and J. Békési. Driver scheduling for vehicle

schedules using a set covering approach: a case study.
Abstracts of the ICAI 2014 - 9th International
Conference on Applied Informatics, to appear.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 16

[2] A. A. Bertossi, P. Carraresi, and G. Gallo. On some
matching problems arising in vehicle scheduling
models. Networks, 17(3):271–281, 1987.

[3] S. Bunte and N. Kliewer. An overview on vehicle
scheduling models. Journal of Public Transport,
1(4):299–317, 2009.

[4] M. Desrochers and F. Soumis. A column generation
approach to the urban transit crew scheduling
problem. Transportation Science, 23(1):1–13, 1989.

[5] A. T. Ernst, H. Jiang, M. Krishnamoorthy, and
D. Sier. Staff scheduling and rostering: A review of
applications, methods and models. European journal
of operational research, 153(1):3–27, 2004.

[6] M. Fischetti, A. Lodi, S. Martello, and P. Toth. A
polyhedral approach to simplified crew scheduling and
vehicle scheduling problems. Management Science,
47(6):833–850, 2001.

[7] V. Gintner, N. Kliewer, and L. Suhl. A crew
scheduling approach for public transit enhanced with
aspects from vehicle scheduling. In Computer-aided
Systems in Public Transport, pages 25–42. Springer,
2008.

[8] N. Kliewer, T. Mellouli, and L. Suhl. A time–space
network based exact optimization model for
multi-depot bus scheduling. European journal of
operational research, 175(3):1616–1627, 2006.

[9] A.-S. Pepin, G. Desaulniers, A. Hertz, and
D. Huisman. A comparison of five heuristics for the
multiple depot vehicle scheduling problem. Journal of
Scheduling, 12(1):17–30, 2009.

[10] I. Steinzen, V. Gintner, L. Suhl, and N. Kliewer. A
time-space network approach for the integrated
vehicle-and crew-scheduling problem with multiple
depots. Transportation Science, 44(3):367–382, 2010.

[11] A. Tóth and M. Krész. An efficient solution approach
for real-world driver scheduling problems in urban bus
transportation. Central European Journal of
Operations Research, 21(1):75–94, 2013.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 17

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 18

Multi-population Firefly Algorithm

Jani Dugonik
Faculty of Electrical Engineering and Computer

Science
University of Maribor

2000 Maribor, Slovenia
jani.dugonik@um.si

Iztok Fister
Faculty of Electrical Engineering and Computer

Science
University of Maribor

2000 Maribor, Slovenia
iztok.fister@um.si

ABSTRACT
This paper proposes a meta-heuristic Multi-Population Fire-
fly Algorithm (MPFA) for single-modal optimization using
two multi-population models, i.e., one is based on the island
model while the other on the mainland-island model. The
unique characteristics of each sub-population is evolved in-
dependently and the diversity of the entire population is ef-
fectively increased. Sub-populations communicate with each
other to exchange information in order to expand the search
range of the entire population. In line with this, each sub-
population explores a specific part of the search space and
contributes its part for exploring the global search space.
The main goal of this paper was to analyze the performance
between MPFA and the original Firefly Algorithm (FA). Ex-
periments were performed on a CEC 2014 benchmark suite
consisting of 16 single-objective functions and the obtained
results show improvements in most of them.

Keywords
swarm intelligence, island model, multi-population, firefly
algorithm

1. INTRODUCTION
An optimization problem is defined as a quadruple OP =
〈I, S, f, goal〉, where I denotes a set of all input instances
x ∈ I in the form of x = {x1, x2, ..., xD} where D is the
dimensionality of the problem, S(x) a set of all feasible so-
lutions y = S(x), f is the objective function estimating
the feasible solution, and goal determines an optimal cri-
teria that can be either the minimum or maximum value
of the objective function. A task of the optimization algo-
rithm is to find the value of y∗ that minimizes or maximizes
(depending on the goal) the value of the objective function
f(y). The domain values of input variables xi ∈ [lbi, ubi]
are limited by their lower lbi and upper ubi bounds.

Nature has evolved over millions of years and has found per-
fect solutions to almost all encountered problems. We can

thus learn the success of problem-solving from nature and
develop nature-inspired heuristic and/or meta-heuristic al-
gorithms in order to solve optimization problems with which
developers are confronted today. Two sources from the na-
ture have particularly inspired developers of new optimiza-
tion algorithms, i.e., Darwinian evolution and the behavior
of social living insects (e.g., ants, bees, termites, etc.) and
other creatures (e.g., birds, dolphins, fireflies, etc.). As a
result, two main classes of nature-inspired algorithms exist
nowadays, i.e., evolutionary algorithms (EA) [3] and swarm
intelligence (SI)-based algorithms [1]. While the former al-
ready came in mature years, the latter has experienced rapid
development. Almost every day, we are witnessing the birth
of a new SI-based algorithm.

One of the younger members of the SI-based algorithms is
the Firefly Algorithm (FA) as proposed by Yang in [11].
FA is inspired by a chemical phenomenon bioluminiscence
needed by natural fireflies to find their prey, on the one
hand, and to attract their mating partners, on the other
hand. This algorithm belongs to a class of population-based
algorithms [5, 4, 11, 12]. Population-based approaches main-
tain and improve multiple candidate solutions, often using
population characteristics to guide the search. Two major
components of any population-based search algorithms are
exploitation and exploration. Exploitation refers to search-
ing within neighborhoods for the best solutions and ensures
that the solutions can converge into optimality, while the
exploration uses randomization in order to avoid the solu-
tions being trapped within a local optima and while at the
same time increasing the diversity of the solutions. A good
combination of these two components may usually ensure
that the global optimality is achieved [11].

One of the possible ways of how to improve the exploration
and exploitation in the original FA algorithm can be split-
ting the FA population into more sub-populations (so-called
multi-populations). For instance, the authors in [10] pre-
sented a multi-population FA for correlated data routing
within underwater wireless sensor networks. They designed
three kinds of fireflies and their coordination rules in or-
der to improve the adaptabilities of building, selecting, and
optimizing a routing path. Groups are represented as sub-
populations, where each sub-population conducts its own
optimization in order to improve the convergence speed and
solution precision of the algorithm. The author in [13] ana-
lyzed the ability of a multi-population differential evolution
to locate all optima of a multi-modal function. The explo-

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 19

ration was ensured by the controled initialization of sub-
populations while a particular differential evolution algo-
rithm ensured the exploitation. Sub-populations were com-
municating via archive where all located optima were stored.
The authors in [8] used an evolutionary algorithm on punc-
tuated equilibria. The theory of punctuated equilibria calls
for the population to be split into several sub-populations.
These sub-populations have isolated evolution (computa-
tion) and scattered with migration (communication).

This paper aimed to evaluate whether it is possible to out-
perform the performance of the original FA algorithm by
splitting its population into more sub-populations. The pro-
posed multi-population FA (MPFA) supports two multi-
population models, i.e., Island [13] and Mainland-Island [9].
In these multi-population models, sub-populations evolve in-
dependently, thus the unique characteristics of each sub-
population can be effectively maintained, and the diver-
sity of the entire population is effectively increased. Sub-
populations communicate with each other by exchanging in-
formation in order to expand the search range of the entire
population. The search technique based on a population has
proved to have good ability regarding global searching and
can find a set of solutions in one-shot operation. The pro-
posed multi-population FAs were compared with the original
FA on single-objective CEC 2014 benchmark functions [7].

The remainder of this paper is organized as follows. In Sec-
tion 2 the original FA will be presented. In Section 3 a
multi-population FA with two multi-population models are
presented in detail. Section 4 presents experiments, where
the number of tests were performed in order to compare the
proposed approach with the original FA. The paper is con-
cluded with Section 5, where our opinion on the obtained
results is given.

2. THE ORIGINAL FIREFLY ALGORITHM
The Firefly Algorithm (FA) [11] has two fundamental fac-
tors: light intensity and attractiveness. Light intensity I
reflects the firefly location and determines its direction of
movement, while the degree of attractiveness determines the
distance that a firefly has moved. Both factors are con-
stantly updated in order to achieve the objective of the op-
timization.

For simplicity, the author in [11] used the following three
idealized rules:

• All fireflies are unisex so that one firefly will be at-
tracted to other fireflies regardless of their sex.

• Attractiveness is proportional to their brightness and
for any two flashing fireflies, the dimmer one will move
towards the brighter one. They both decrease as their
distance increases. If there is no brighter one, it will
move randomly.

• The brightness of a firefly is affected or determined by
the landscape of the objective function.

Based on these three rules, the basic steps of the firefly al-
gorithm (FA) can be summarized as the pseudo-code shown

Algorithm 1 Firefly Algorithm

1: Objective function f(x), x = (x1, ..., xD)T

2: Generate initial population of fireflies xi (i=1,2,...,Np)
3: Light intensity Ii at xi is determined by f(xi)
4: Define light absorption coefficient γ
5: while (t < Gmax) do
6: for i=1 to n fireflies do
7: for j=1 to n fireflies do
8: if (Ij > Ii) then
9: Move firefly i towards firefly j Eq. (3)

10: end if
11: Evaluate new solution and update light in-

tensity Eq. (1)
12: end for
13: Rank fireflies and find the current best
14: end for
15: Post-process results and visualization
16: end while

in Algorithm 1. Light intensity of a firefly is defined as:

I(r) = I0 · e−γ·r
2

(1)

where I0 is the original light intensity at the location of r =
0, γ is the light absorption coefficient and r is the distance
between two fireflies. The distance between any two fireflies
i and j at xi and xj can be expressed as Cartesian distance
rij = ||xi − xj ||. As firefly attractiveness is proportional
to the light intensity, we can define the attractiveness of a
firefly using the following equation:

β(r) = β0e
−γ·r2 (2)

where β0 is their attractiveness at r = 0. Firefly i that is
attracted to another more attractive firefly j is determined
by:

xi = β0e
−γ·r2 · (xj − xi) + α · εi (3)

which is randomized with the vector of random variable εi,
being drawn from a Gaussian distribution, and step factor
α ∈ [0, 1].

3. THE MULTI-POPULATION FIREFLY AL-
GORITHM

The multi-population firefly algorithm (MPFA) can be sum-
marized in the pseudo-code as shown in Algorithm 2. MPFA
will consider there to be an overall population P of Np
fireflies (individuals) that is split into N sub-populations
P1, P2, ...PN . Each sub-population has Nsp individuals and
the number of N sub-populations is calculated with the fol-
lowing equation:

N =
Np

Nsp
(4)

For sub-populations to communicate with each other, the
magnitude and frequency of that communication are neces-
sary. These two parameters determine the amount of iso-
lation and interaction between sub-populations. Periods of
isolated evolution are referred to as epoch, with migration

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 20

Algorithm 2 Multi-Population Firefly Algorithm

1: Objective function f(x), x = (x1, ..., xD)T

2: Calculate number of sub-populations (N)
3: for all n ∈ N do
4: Generate initial sub-population Pn of fireflies xi

(i=1,2,...,Np)
5: end for
6: Light intensity Ii at xi is determined by f(xi)
7: Define light absorption coefficient γ
8: for e=1 to Gmax

epoch
do

9: for all n ∈ N do
10: for g=1 to epoch do
11: for i=1 to n fireflies do
12: for j=1 to n fireflies do
13: if (Ij > Ii) then
14: Move firefly i towards firefly j
15: end if
16: Evaluate new solutions
17: Update light intensity
18: end for
19: Rank fireflies and find the current best
20: end for
21: end for
22: end for
23: Migrate fireflies
24: end for
25: Find the best firefly from all sub-populations
26: Post-process results and visualization

occurring at the end of each epoch except the last. The
length of the epoch determines the frequency of interac-
tion and is usually specified by a number of generations
(epoch) that Pn evolves in isolation. During the epoch, each
sub-population executes a sequential FA for epoch indepen-
dently. At the end of each epoch, individuals are migrated
between sub-populations. There are many various migra-
tion strategies in multi-population models. The following
two models are described and used in this paper: island and
mainland-island model.

3.1 Island Model
The island Model Firefly Algorithm (MPFA-In, where n de-
termines the number of sub-populations) consist of islands,
where islands are referred to as sub-populations. When each
sub-population is executed a sequential FA for epoch gener-
ations, individuals are migrated between sub-populations,
as shown in Algorithm 3. The magnitude of the commu-
nication is defined, for instance, as Nm = 25%. Then,
Nm percent of migrants are chosen for each sub-population
which were exchanged with other sub-populations, as shown
in Figure 1. Let us assume two sub-populations P1 and P2

with Nsp = 10 and Nm = 20% are defined. Then, two
individuals from sub-population P1 are exchanged with two
individuals in sub-population P2. Thus, the sizes of the sub-
populations remain the same. After the algorithm reaches
the termination criteria, the best individual is taken from
all sub-populations.

3.2 Mainland-Island Model
The Mainland-Island Model Firefly Algorithm (MPFA-Mn,
where n determines the number of sub-populations) consist

Figure 1: Island Model

Algorithm 3 Multi-Population Firefly Algorithm with Is-
land Model - Migration

1: Get the number of migrants Nm to migrate
2: for i = 1 to N do
3: Choose Nm individuals from Pi that are mutually

different and save them to the matrix M
4: end for
5: Mutually exchange individuals that are defined in ma-

trix M

of mainland and islands, where mainland and islands are re-
ferred to as sub-populations. When each sub-population has
executed a sequential FA for Gi generations, individuals are
migrated from sub-populations P2, ..., PN to sub-population
P1, as shown in Algorithm 4. Let us assume two sub-
populations P1 and P2 with Nsp = 10 andNm = 20% are de-
fined. Then, two individuals per sub-population P2, ..., PN
are moved to sub-population P1, as shown in Figure 2. At
the end of migration, sub-population P1 is sorted according
to the fitness values of migrated individuals. In order to keep
the size of sub-population P1 the same, the top Nsp individ-
uals are retained, while the others are discarded. After the
algorithm has reached the terminating criteria, the best in-
dividual was taken from the sub-population P1 (mainland).

Algorithm 4 Multi-Population Firefly Algorithm with
Mainland-Island Model - Migration

1: Get the number of migrants Nm to migrate
2: for i = 2 to N do
3: Choose Nm individuals from Pi that are mutually

different and save them to the matrix M
4: end for
5: Copy chosen individuals from sub-populations
P2, ..., PN to sub-population P1

6: Sort individuals in P1 by light intensity
7: Keep top Nsp individuals, remove others, so the size of

the sub-population P1 remains the same

4. EXPERIMENTS AND RESULTS
The goal of this experimental work was to show that MPFA
can outperform the results of the original FA algorithm. In
our experiments, the results of the original FA were com-
pared with the results of the following MPFA: MPFA-I2
and MPFA-I4 (i.e., MPFA with island model using two or
four sub-populations), and MPFA-M2 and MPFA-M4 (i.e.,
MPFA with mainland-island model using two or four sub-
populations). Additionally, the following three population
models were used during tests, i.e., small with an original

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 21

Table 1: Comparison between FA algorithms for population model Np=100 and D=10

Func. FA MPFA-I2 MPFA-I4 MPFA-M2 MPFA-M4
1 1.0243e+06 ± 2.0147e+06 7.6582e+05 ± 3.4941e+06 6.4129+e05 ± 2.3202e+06 7.6582e+05 ± 3.4929e+06 5.0199e+05 ± 9.3012e+05
2 1.3862e+04 ± 8.2668e+03 6.1151e+03 ± 4.8489e+03 5.4070+e03 ± 4.0991e+03 6.1151e+03 ± 4.8489e+03 6.5121e+03 ± 8.0172e+03
3 2.0877e+04 ± 1.9394e+04 2.2167e+04 ± 2.0586e+04 1.6543e+04 ± 1.3981e+04 2.2167e+04 ± 2.0586e+04 2.3253e+04 ± 2.6483e+04
4 7.7409e+00 ± 1.6024e+01 6.9890e+00 ± 1.1157e+01 7.0024e+00 ± 2.9768e+01 7.1320e+00 ± 1.0983e+01 6.8717e+00 ± 8.8252e+00
5 2.0107e+01 ± 0.0704e+00 2.0059e+01 ± 0.0405e+00 2.0035e+01 ± 0.0260e+00 2.0059e+01 ± 0.0405e+00 2.0044e+01 ± 0.0380e+00
6 8.4299e+00 ± 4.0688e+00 8.9432e+00 ± 2.5879e+00 8.3829e+00 ± 2.6099e+00 8.9432e+00 ± 2.5879e+00 9.6953e+00 ± 3.2605e+00
7 5.4650e+00 ± 6.2455e+00 9.9181e+00 ± 1.0126e+01 5.8841e+00 ± 4.6803e+00 9.9181e+00 ± 1.0126e+01 5.3097e+00 ± 5.9105e+00
8 1.6925e+01 ± 1.5711e+01 2.3883e+01 ± 2.3057e+01 2.1892e+01 ± 1.4542e+01 2.3883e+01 ± 2.3057e+01 3.0847e+01 ± 2.5583e+01
9 1.6924e+01 ± 1.2980e+01 1.8907e+01 ± 2.0379e+01 1.9903e+01 ± 1.6285e+01 1.8907e+01 ± 2.0379e+01 3.0847e+01 ± 2.7831e+01
10 1.1733e+03 ± 9.0738e+02 1.3110e+03 ± 1.1059e+03 1.0351e+03 ± 8.9937e+02 1.3110e+03 ± 1.1157e+03 1.2901e+03 ± 1.4476e+03
11 1.1434e+03 ± 9.9968e+02 1.2193e+03 ± 1.0618e+03 9.1012e+02 ± 8.3705e+02 1.2193e+03 ± 1.0618e+03 1.3165e+03 ± 1.1339e+03
12 0.4707e+00 ± 0.9716e+00 0.3272e+00 ± 1.0509e+00 0.1942e+00 ± 0.4033e+00 0.3272e+00 ± 1.0509e+00 0.4343e+00 ± 1.7646e+00
13 0.3973e+00 ± 0.3133e+00 0.3949e+00 ± 0.3414e+00 0.3137e+00 ± 0.2133e+00 0.3949e+00 ± 0.3414e+00 0.3578e+00 ± 0.3217e+00
14 0.3618e+00 ± 0.2481e+00 0.3578e+00 ± 0.2386e+00 0.3260e+00 ± 0.1413e+00 0.3578e+00 ± 0.2386e+00 0.3378e+00 ± 0.2627e+00
15 1.3559e+01 ± 1.5484e+01 1.7627e+01 ± 1.5247e+01 2.1337e+01 ± 1.8450e+01 1.7627e+01 ± 1.5247e+01 2.8024e+01 ± 2.6350e+01
16 3.7235e+00 ± 0.5893e+00 3.8952e+00 ± 0.7525e+00 3.7126e+00 ± 0.7731e+00 3.8952e+00 ± 0.7525e+00 4.0390e+00 ± 0.7963e+00

Figure 2: Mainland-Island Model

population size of Np = 100, medium with Np = 200 and
large with Np = 400. The original population size was di-
vided between sub-population according to Eq. (4). The
same number of generations Gmax = 1, 000 was used for
each sub-population for each algorithm.

The FA algorithms used the following parameter settings.
The maximum number of evaluations was set as MAX FEs =
10, 000 ·D. The randomized factor was fixed at α = 0.5, the
lights absorption at γ = 1, and the attractiveness at the be-
ginning β0 = 1. In each generation the randomized factor α
was updated by the following equation: α = α·(1−δ), where

δ = 1.0 − (104

0.9
)

1
G [5]. For the MPFA algorithms, some ad-

ditional parameters were used, like the number of epochs as
epoch = 100, and migration probability Nm = 25%. Tests
were conducted on all three population models using five
FA algorithms, i.e., FA, MPFA-I2, MPFA-I4, MPFA-M2,
and MPFA-M4. In summary, 15 tests were performed, in
which 51 independent runs were performed.

All algorithms were tested on the 16 single-objective uni-
modal and simple multi-modal CEC 2014 benchmark func-
tions [7]. For uni-modal functions the convexity guarantees
that the final optimal solution is also the global optimum.
The global maximum was measured according to an error
value ER. The error value for each function is calculated
by subtracting the value of global optima from the obtained
value according to the following equation:

ERi = fi(x)− fi(x∗), [7] (5)

where i is the function number, fi(x) is the obtained value,
and fi(x∗) = 100·i is the value of global optima for i-th func-

tion. Note that error values smaller than 10−8 were taken as
zero. In order to limit a search space, each problem variable
can capture the value from the range xi ∈ [−100, 100]D,
where values -100 and 100 represent its upper and lower
bounds. The dimensionality of all problems was limited to
D = 10.

The results of the mentioned FA algorithms are illustrated
in Table 1. The results for all population models (i.e., small,
medium, large) were obtained. Small population model (Np =
100) gave the best results, and due to the paper’s length lim-
itation only these results are presented in this table. In line
with this, the original FA algorithm is compared with the
MPFA-I2 and MPFA-M2 using two sub-populations of size
Nsp = 50, and MPFA-I4 and MPFA-M4 using four sub-
populations of size Nsp = 25. The table presents mean and
standard deviation over 51 independent runs for each algo-
rithm. The results in Table 1 show that MPFA-I2 as well
as MPFA-M2 outperformed the original FA on 7 out of 16
test functions, MPFA-M4 on 8 out of 16 test functions and
MPFA-I4 on 12 out of 16 test functions. The best results
were obtained with MPFA-I4 which outperformed the other
MPFAs and the original FA on 10 out of 16 functions.

In order to evaluate the quality of the results statistically,
Friedman tests [6] were conducted that compare the average
ranks of the compared algorithms. Thus, a null-hypothesis is
placed that states: two algorithms are equivalent and there-
fore, their ranks should be equal. When the null-hypothesis
is rejected, the Bonferroni-Dunn test [2] is performed. In
this test, the critical difference is calculated between the
average ranks of those two algorithms. If the statistical dif-
ference is higher than the critical difference, the algorithms
are significantly different.

Three Friedman tests were performed regarding data ob-
tained by optimizing 16 functions of three different popula-
tion sizes according to five measures. As a result, each algo-
rithm during the tests (also the classifier) was compared with
regard to the 48 functions x 5 measurements this means,
240 different variables. The tests were conducted at a sig-
nificance level of 0.05. The results of the Friedman non-
parametric test can be seen in Figure 3 that is divided into
three diagrams. Each diagram shows the ranks and confi-
dence intervals (critical differences) for the algorithms under

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 22

FA

MPFA-I2

MPFA-I4

MPFA-M2

MPFA-M4

 0 1 2 3 4

(a) Small (Np = 100)

 0 1 2 3 4

(b) Medium (Np = 200)

 0 1 2 3 4

(c) Large (Np = 400)

Figure 3: Results of the Friedman non-parametric test

consideration with regard to the dimensions of the functions.
Note that the significant difference between the two algo-
rithms is observed if their confidence intervals denoted as
thickened lines in Fig. 3 do not overlap.

As can be seen from Fig. 3, the MPFA-I4 outperformed the
results of the original FA as well as the other algorithms
using all three observed population size model significantly.
The MPFA-M4 achieved the results that are significantly
worse than the results of the other FA algorithms. The
performances of the other three algorithms were comparable
with each other.

5. CONCLUSION
In this paper, we proposed MPFA using two multi-population
models, i.e., Island and Mainland-Island Models. The pro-
posed MPFAs were compared with the original FA algorithm
using three different population size models (i.e., small, medium,
large) by solving the CEC-14 benchmark function suite. Based
on the obtained results, we can see that the most promising
results were obtained by the MPFA-I4. This fact encourage
us to continue with the experiments of multi-population FA
in the future.

The future work could be especially focused on the migra-
tion probability and dimension of the problem. Current mi-
gration probability was fixed for all multi-population mod-
els, but the migration probability can be modified or even
adapted during the algorithm run. On the other hand, all
the performed tests were done on small dimensions of the
problem. Thus, the algorithm with few number of evalua-
tions and larger population sizes did not reach the migration
phase at all. With larger dimensions, the number of evalua-
tions would be increased and the multi-population strategies
could perform even better.

6. REFERENCES
[1] C. Blum and D. Merkle. Swarm Intelligence.

Springer-Verlag, Berlin, 2008.

[2] Janez Demšar. Statistical comparisons of classifiers
over multiple data sets. Journal of Machine Learning
Research, 7:1–30, 2006.

[3] A. Eiben and J. Smith. Introduction to Evolutionary
Computing. Springer-Verlag, Berlin, 2003.

[4] I. Fister, I. Fister Jr, X.-S. Yang, and J. Brest. A
comprehensive review of firefly algorithms. Swarm and
Evolutionary Computation, pages 34–46, 2013.

[5] I. Fister, X.-S. Yang, I. Fister, and J. Brest. Memetic
firefly algorithm for combinatorial optimization. In
Proceedings of the Fifth International Conference on
Bioinspired Optimization Methods and their
Applications - BIOMA 2012, pages 75–86, 2012.

[6] Milton Friedman. A comparison of alternative tests of
significance for the problem of m rankings. The Annals
of Mathematical Statistics, 11:86–92, March 1940.

[7] J. J. Liang, B.-Y. Qu, and P. N. Suganthan. Problem
Definitions and Evaluation Criteria for the CEC 2014
Special Session and Competition on Single Objective
Real-Parameter Numerical Optimization. Technical
report, Computational Intelligence Laboratory,
Zhengzhou University, Zhengzhou China and
Technical Report, Nanyang Technological University,
Singapore, 2013.

[8] W. N. Martin, J. Lienig, and J. P. Cohoon. Island
(migration) models: evolutionary algorithms based on
punctuated equilibria. Handbook of Evolutionary
Computation, Oxford University Press, 1997.

[9] M. Slatkin and L. Voelm. FST in a Hierarchical Island
Model. Genetics, 1991.

[10] M. Xu and G. Liu. A Multipopulation Firefly
Algorithm for Correlated Data Routing in Underwater
Wireless Sensor Networks. International Journal of
Distributed Sensor Networks, 2013.

[11] X.-S. Yang. Nature-Inspired Metaheuristic Algorithms.
Luniver Press, 2008.

[12] X.-S. Yang. Multiobjective firefly algorithm for
continuous optimization. Engineering with Computers,
pages 175–184, 2013.

[13] D. Zaharie. A Multipopulation Differential Evolution
Algorithm for Multimodal Optimization. In
Proceedings of Mendel 2004 - 10th International
Conference on Soft Computing, pages 17–22, 2004.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 23

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 24

Monte Carlo Path Tracing with OpenCL

Andrej Bukošek
FRI, University of Ljubljana

Večna pot 113,
1000 Ljubljana, Slovenia

andrej.bukosek@gmail.com

ABSTRACT
We introduce an interactive Monte Carlo path tracer that
uses the OpenCL framework. A path tracer draws a photo-
realistic image of a 3D scene by simulating physical effects
of light. Interactivity enables the user to move around the
scene in real time, while OpenCL makes it possible to run
the same code on either CPU or GPU architectures. The
results presented here are a starting point for our further
work on path tracing on heterogeneous architectures.

Categories and Subject Descriptors
I.3.7 [Computer Graphics]: Raytracing, Animation; D.1.3
[Software]: Parallel programming

General Terms
Algorithms, Performance

Keywords
path tracing, OpenCL, rendering, computer graphics

1. INTRODUCTION
The path tracing algorithm draws a photorealistic image of
a 3D scene by simulating the bouncing of light around the
scene in a physically-correct way [2]. Rendering consists of
shooting rays of light from the camera into the scene, check-
ing whether they intersect any object in their path, and re-
cursively bouncing them off the intersected object based on
physical laws. How the light is reflected off objects or passed
through them depends on their material. We can describe
this process using functions such as: BRDF (bidirectional re-
flectance distribution function), BTDF (bidirectional trans-
mittance distribution function), and BSSRDF (bidirectional
surface scattering reflectance distribution function).

BRDF describes how light reflects off opaque objects [2, 5]
and defines the look of the material (e.g. whether it looks
more metallic or more plastic). BTDF describes how light
travels through a translucent object (e.g. glass), while BSS-
RDF describes the scattering of light under the surface of
an object before it leaves the object (an example of such a
material is human skin).

1.1 BRDF

~n

~ωi ~ωo

Figure 1: BRDF vectors.

The BRDF has two parameters: direction towards the light
(~ωi) and direction towards the camera (~ωo), as shown in
Figure 1. Based on these two directions and the internal
parameters of the BRDF model, we can calculate the re-
flectance of the object’s surface in the point hit by the ray
of light.

To obtain physically-correct results, the BRDF must satisfy
two properties: reciprocity and conservation of energy. A
BRDF is reciprocal if it returns the same result if the light
and camera direction vectors are swapped. A BRDF con-
serves energy if the amount of light reflected off an object
is less than or equal to the amount of incident light. This
means that a BRDF cannot generate light.

1.2 Lambertian BRDF
The simplest BRDF is the Lambertian model, which doesn’t
exist in nature (the closest materials available are unpro-
cessed wood and printer paper, but only if we look at it
straight on and not from the sides).

BRDF (~ωi, ~ωo) =
ρ

π
(1)

Equation 1 shows the BRDF for this model. ρ represents
the reflectance of the point hit by light.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 25

Figure 2: Example of the Lambertian BRDF.

Figure 2 shows a sphere and walls made out of a Lambertian
material.

1.3 Path tracing
We can calculate the luminance of each point in a 3D space
using the global illumination equation (2).

Lo(~x, ~ωo, λ, t)︸ ︷︷ ︸
outgoing luminance

= Le(~x, ~ωo, λ, t)︸ ︷︷ ︸
emitted luminance

+

∫
Ω

BRDF(~x, ~ωi, ~ωo, λ, t) · Li(~x, ~ωi, λ, t) · 〈−~ωi, ~n〉 d~ωi︸ ︷︷ ︸
contributed luminance from all possible directions

(2)

Outgoing luminance Lo, directed outward from point ~x in di-
rection ~ωo in time t at wavelength λ, is the sum of luminance
emitted by the object itself (Le) and the contribution of lu-
minance from all possible incident directions ~ωi (as shown
in Figure 3).

~ωi1

~ωi2
~ωi3

~ωo

~x
Ω

Li1

Li2

Li3
Lo

Figure 3: Graphical representation of Equation 2.

The luminance contribution is a sum of all luminances (Li)
contributed by incident rays of light coming from the area
of the hemisphere Ω (which extends from point ~x on the
object in the direction of the normal ~n). Each contribution
is attenuated based on the incident angle and the BRDF
(see subsection 1.1) of the object’s material.

The global illumination equation (2) has no general analyti-
cal solution and has to be solved numerically using a Monte
Carlo approach.

1.4 Numerical solution
The path tracing algorithm shoots rays from the camera
into the scene, bounces them around the objects within,
and calculates the luminance of points hit along the way.
A random sample of the hemisphere is needed when calcu-
lating the contributions, since it’s impossible to check every
conceivable direction. However, such an approach provably
converges towards the right solution over time [3]. To im-
prove the quality of generated images, supersampling is usu-
ally used. The more samples we use, the less noise is present
in the output image, however, the render time increases.

1.5 OpenCL
OpenCL is a framework for executing programs written in a
special C99-based language across heterogeneous platforms
[4].

A platform can have many compute devices attached to a
host processor, each of them can execute a kernel (a program
written in OpenCL’s C-like language). Compute devices can
be standard processors (CPUs), graphics processing units
(GPUs), digital signal processors (DSPs), etc.

The main advantage is that the programmer writes the ker-
nel only once and OpenCL recompiles it for the compute
devices available in the system at runtime.

Compute device

Workgroup Workgroup

Private
memory

Work item

Private
memory

Work item

Local memory

Private
memory

Work item

Private
memory

Work item

Local memory

Global + constant memory

Host memory

Figure 4: OpenCL memory model.

Figure 4 shows OpenCL’s memory model, which is loosely
based on actual hardware implementations from AMD and
NVIDIA. Access to global memory is slow and should be
minimized for optimal performance.

OpenCL’s dialect of C includes memory region qualifiers for
pointers, which determine where in the memory hierarchy
the data they point to resides (__global, __local, __constant,
__private). It also offers a variety of specialised fixed-length
vector types that map directly to SIMD registers on the un-
derlying hardware, thus making optimisation easier. While
the language is similar to C99, it omits function pointers, bit
fields, variable-length arrays, and most notably—recursion.
Instead of the standard C library, a set of math-centered
functions is provided.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 26

2. IMPLEMENTATION

(a) 38 objects, CPU, ∼34 FPS. (b) 38 objects, GPU, ∼88 FPS.

(c) 938 objects, CPU, ∼1.7
FPS.

(d) 938 objects, GPU, ∼4.8
FPS.

Figure 5: Comparison of rendering on CPU vs. GPU.

The test implementation renders a sphereflake (a fractal
structure made out of spheres) using the path tracing al-
gorithm. Figure 5 shows a comparison of rendering speeds
on a CPU (Intel Core i7-4771: 4 cores, 8 threads) and GPU
(integrated Intel HD4600: 280 compute units). The GPU is
about 2–3-times faster in all tested cases, as was expected.
Adjusting the OpenCL workgroup size might give even bet-
ter performance.

The program is implemented in C and OpenCL 1.0, it con-
sists of 783 lines of code in total (545 lines for the C driver
and 238 lines for the OpenCL kernel). The user interface
is implemented with GLUT and OpenGL (OpenGL is used
only for drawing text and pixels into the window, all com-
putation is done with OpenCL).

Rendering is parallelised by pixels (each pixel represents
an independent work unit). The objects, emitters (lights),
and camera parameters are saved into the constant memory
of the compute device, while the raw framebuffer, random
number generator state (seed) for each pixel, and the pixels
themselves are stored in the device’s global memory.

While the natural implementation of path tracing is recur-
sive, it is also possible to implement it iteratively, which is
what we did. The main reason for this was because OpenCL
doesn’t support recursion, as it is expensive and slows down
execution.

Normally, the bouncing of rays is terminated using Russian
roulette [2], however, that is not the most appropriate so-
lution to use on GPUs. Russian roulette terminates the
path based on a randomly generated number, which gives
an uneven workload distribution. GPUs perform best when
all threads within a work unit execute the same code. If
a single thread has to perform a branch, it slows the other
threads down. To solve this problem, a constant number of
bounces is used instead.

Random number generation is an important part of every
Monte Carlo simulation. Marsaglia’s xorshift pseudorandom
number generator (PRNG) was chosen for this program, as
it is very fast and simple to implement on both CPU and
GPU architectures [1]. Figure 6 shows the implementation
of the aforementioned pseudorandom number generator.

static float gen_random(unsigned int *seed)
{

unsigned int y = *seed;

y ^= y << 13;
y ^= y >> 7;
y ^= y << 17;

*seed = y;

/* Convert random bits to float between 0 and 1 */
union {

float f;
unsigned int ui;

} res;
res.ui = (y & 0x007fffff) | 0x40000000;

return (res.f - 2.0f) * 0.5f;
}

Figure 6: PRNG implementation in OpenCL.

3. CONCLUSION
A simple interactive path tracer capable of rendering scenes
consisting of spheres was implemented using OpenCL. It
runs on both CPU and GPU architectures, with GPUs out-
performing CPUs, as expected.

Further work might include sharing the load between CPU
and GPU (currently, rendering is performed on either the
CPU or the GPU, but not on both at the same time), which
should increase performance. A system for automatically
tuning the amount of samples rendered on the CPU vs. GPU
based on their speed would also be a useful addition. An-
other crucial improvement would be to use a spatial indexing
structure to accelerate ray–scene intersections (currently, a
naive linear traversal is used).

4. REFERENCES
[1] G. Marsaglia. Xorshift RNGs. Journal of Statistical

Software, 8(14), 2003.
http://www.jstatsoft.org/v08/i14/paper.

[2] M. Pharr and G. Humphreys. Physically Based
Rendering, Second Edition: From Theory To
Implementation. Morgan Kaufmann Publishers Inc.,
2010.

[3] P. Shirley and R. K. Morley. Realistic Ray Tracing, 2nd
edition. A. K. Peters, Ltd., 2003.

[4] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A
parallel programming standard for heterogeneous
computing systems. Computing in science &
engineering, 12(3):66, 2010.

[5] C. Wynn. An introduction to BRDF-based lighting.
http://www.cs.ucla.edu/~zhu/tutorial/An_

Introduction_to_BRDF-Based_Lighting.pdf.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 27

http://www.jstatsoft.org/v08/i14/paper
http://www.cs.ucla.edu/~zhu/tutorial/An_Introduction_to_BRDF-Based_Lighting.pdf
http://www.cs.ucla.edu/~zhu/tutorial/An_Introduction_to_BRDF-Based_Lighting.pdf

28StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October

A Garlic Clove Direction Detection based on Pixel
Counting

Pavel Fičur
University of Primorska, UP FAMNIT

Glagoljaška 8, SI6000 Koper
Slovenia

pavel.ficur@upr.si

ABSTRACT
In agricultural communities it is well known that planting
garlic is very labor intensive work. The main problem con-
sists of proper orientation of garlic clove at the time of in-
serting it in the soil. Because of the garlic’s irregular shape,
this is usually done efficiently by human hand. As develop-
ment of technology makes use of small cameras very accessi-
ble for a wide range of applications, garlic clove orientation
detection could be efficiently implemented in garlic planting
with machinery. A detection algorithm using simple pixel
counting method and an experimental result are presented.
Experimental rate of proper direction detection was 100%.

Keywords
garlic planting, computer vision, direction detecting

0

1000

2000

3000

4000

5000

0 50 100 150 200 250

Figure 1: Histogram of the initial capture.

1. INTRODUCTION
In the process of planting garlic, proper orientation of garlic
cloves is crucial. The garlic cloves have an irregular shape
and are of different length and width. These properties make
automated planting more difficult. An efficient orientation

detection is needed, in order to make sure that the garlic
clove is inserted in correct direction into a planting mecha-
nism. Some research was recently done in the field of com-
puter vision in agriculture [2, 3]. Most research was done
on recognition of fruit, not on seeds. In a recent paper [1],
authors reported a very high rate, 97%, of correctly oriented
garlic cloves using computer vision. The method proposed
in the article is to collect information of root or bud [1] and
to calculate edge flexion for determining if it is the root or
the bud. The aim of this work is to use the entire shape and
compare the information from root and bud using a sim-
ple method of pixel counting. Authors [1] also noticed the
problem of outdoor light which is solved in our case. Exper-
imental work was conducted in laboratory and showed that
the 100% rate of correctly detected orientation is possible.
With a precise design, also on the field such result can be
obtained because of the artificial light, which is crucial for
the correct image.

2. METHODS
In this section data collection, image manipulation and de-
tection algorithm are presented in detail.

2.1 Collecting data
For further data analysis of each clove, a black and white (bi-
nary) picture is needed. The picture is first taken in RGB
mode and consequently set to binary (0/1) mode. In order
to avoid the influence of daylight, a small dark box is used.
Under the box there is an artificial light source emitting the
light through an opaque glass. On this glass there is the
garlic clove. The box is designed in such a way that the gar-
lic clove can enter only in right (root down) or wrong (root
up) direction [1]. In this way the RGB picture is of high
contrast composed of near white pixels for the background
and near black pixels for the clove shape. The histogram of
ligt level on x-axis in Figure 1 shows the gap between two
main groups of pixels. The picture is further transformed
into a matrix with 0,1 entries, 0 for background (white), 1
for foreground. The 1 are determined by the pixels covered
by the clove. In Figure 2 we can se the original and bina-
rized picture of the same garlic clove.

2.2 Extracting relevant elements
As the garlic cloves vary in size, there may be some zero
columns in the matrix, belonging to the left and the right
parts of the matrix, and also there may be some zero rows,
belonging to the upper and the bottom parts of the matrix.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 29

These pixels belong to background and are not relevant for
our direction detection, moreover, this pixels could disturb
the direction detection algorithm. All these zero columns
and rows must be deleted. At this point there is a matrix
representing the shape of the garlic clove without any empty
(only 0) row or column.

2.3 The orientation detection algorithm
As the picture is a binary matrix, it is easy to count ones
in each row and adding the count to the sum of previous
rows. This procedure is done twice, first from top to bottom
and second from bottom to top. If the root of the clove is
below, the bottom sum increases faster than the top sum
and opposite for the situation where the root is up. At this
moment we can select the sum results of two central rows
of the clove from top and bottom, subtract the bottom sum
from the top sum and check the sign. If the matix contain
odd number of rows, we omit the central one. If the sign is
negative, then the clove is correctly oriented (root below),
if the sign is positive, then the clove is in wrong direction
(root above) and must be rotated before going further in the
machinery.

3. EXPERIMENTAL WORK
All steps conducted in laboratory are explained here. At the
end of section the results are presented.

3.1 Getting and preprocessing pictures
Three hundred garlic seed cloves were selected for testing
and inserted one by one into the box of dimensions 3 by 6
centimeters. From downside the clove was artificially illumi-
nated through the opaque glass. The seeds were of different
height and width and freely oriented (up, down, different
angle). Then the RGB picture was acquired, cropped, con-
verted in black and white mode and saved in the size of 400
by 800 pixels. See Figure 2. For this purpose the everyday
usual photographic camera Canon G10 mounted on a tripod
was used. GIMP, GNU immage manipulation program was
used for image manipulation.

3.2 Direction detecting
For matrix manipulation Matlab was used. Each saved im-
age was imported, counting of pixels in each row was per-
formed from top to bottom and from bottom to top. In Fig-

ure 3 the line of the difference (bottom line) is non-positive
sign, that is, the clove is correctly oriented. In Figure 4

the line of the difference (bottom line) is non-negative sign,
that is, the clove is incorrectly oriented. Both figures also
show the cumulative sums generated by algorithm. The sum
that increases faster is the sum of the root which is wider
than the bud. For the purpose of answer, the two middle
rows were selected and the sign of difference of the sums was
checked. For this part of work the maximum time used was
0,3s in Matlab on an i5 core personal computer.

3.3 Results
Orientation of all the three hundred cloves was correctly
detected, so 100% of correctly orientation detected cloves
was achieved. The reason for success of the method is quite
obvious because of the natural shape of garlic cloves.

Figure 2: Original and binarized picture of the same

clove.

0 100 200 300 400 500
−2

−1

0

1

2

3

4

5

6

7

8
x 10

4

Figure 3: Diagram of a correctly oriented clove.

The x-axis represents the row distance from bottom

or top, the y-axis represents the cumulative sum of

both countings. The line starting and ending at zero

level is the difference.

0 100 200 300 400 500 600
−2

0

2

4

6

8

10
x 10

4

Figure 4: Diagram of an incorrectly oriented clove.

The x-axis represents the row distance from bottom

or top, the y-axis represents the cumulative sum of

both countings. The line starting and ending at zero

level is the difference.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 30

4. CONCLUSIONS
In an experimental way we can conclude that the problem of
detecting garlic clove direction can be solved. Now we have
to pass on the field. A small camera has to be connected
to some small computer, e.g. Raspberry PI and mounted
on a real planting machinery. The most important data we
need is the speed of planting. Is the couple camera-computer
enough fast? Another question is the minimum amount of
pixels for efficient run on the real machine in the sense of
correct detection.

5. REFERENCES
[1] G. Chi and G. Hui. Direction identification system of

garlic clove based on machine vision. Telkomnika,
11(5):2323–2329, 2013.

[2] Y. Wang, L. Xu, X. Zhao, and X. Hou. Maize seed
embryo and position inspection based on image
processing. In D. Li and Y. Chen, editors, Computer

and Computing Technologies in Agriculture VII, volume
420 of IFIP Advances in Information and

Communication Technology. Springer Berlin
Heidelberg, 2014.

[3] S. Yamamoto, K. Kobayashi, and Y. Kohno. Evaluation
of a stawberry-harvesting robot in a field test.
Biosystems Engineering, 15(2):160–171, 2010.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 31

32StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October

Simple approach to finding repeated patterns in
opponents Texas Hold’em no-limit game

Gregor Vohl
University of Maribor

Faculty of Electrical Engineering and Computer
Science

Smetanova ulica 17
Maribor, Slovenia

gregor.vohl@gmail.com

Janez Brest
University of Maribor

Faculty of Electrical Engineering and Computer
Science

Smetanova ulica 17
Maribor, Slovenia

janez.brest@um.si

ABSTRACT
Collecting information about opponents in poker games is
a hard task. You need to pay close attention to everything
they are doing. Watch them closely and try to figure out
if they are doing anything that is abnormal - playing with
chips, breathing, shaky hands, swallowing saliva, etc. Any-
one who has played poker before knows that this is the differ-
ence between good and great players. It is a hard task to do
at a table with living opponents but it is even harder if you
do not see your opponents and can not get any information
about the players behavior or their emotions. Poker-bots see
only actions from opponents and based on that they must
build an opponent profile of play actions.

This article shows how it is possible to find repeated pat-
terns in opponents games. We will show an easy approach
to search for important patterns in history games. With
the help of additional information a poker-bot can become
a better and smarter player and win more chips from oppo-
nents.

1. INTRODUCTION
Texas Hold’em belongs to games with imperfect information.
That means that when a player has to make a decision some
information is not available. A single player does not see the
cards of other players, does not know the next card from the
deck and can only hope for a better end combination than an
opponent. This is a game of experience and intuition. The
important part for the better play is analysis of old games
and learning from good and lost games. The key concept is
to find if there are repeated patterns in opponents games.
When playing online poker players can make notes about the
opponents which are available later when the same opponent
is back at the table. Because there are a lot of different
players, notes can be useful for identifying and remembering
the weaknesses in opponents games. At a live poker table
it is a bit complicated because it is not allowed to write

notes on paper. Players can make notes only in their heads.
Finding the weaknesses of opponents is always a hard task.
Opponents are always trying to improve their games and
limit their signs of weaknesses. A lot of poker players wear
sun glasses, are totally frozen, are not talking, are trying
to show no emotions, etc. The famous poker quote about
finding the weakest player at the poker table says: ”If after
ten minutes at the poker table you do not know who the
patsy is − you are the patsy” [8]. Try to imagine now how
hard it would be to find the weakness of an opponent if you
can not see him acting behind the table and he will have no
emotional downfall.

Analyzing old poker games was the key concept at imple-
mentation of poker-bot Rembrant. We used the advantage of
the communication protocol from the University of Alberta.
They developed an easy communication protocol which is
used at ACPC competitions [1]. With the help of commu-
nication protocol it is very easy to have a great overview of
historical games. We have written a simple wrapper around
the history games and implemented a searching algorithm
for patterns of similar play actions of opponents. Our ap-
proach was to search in the history games for repeated ac-
tions. Because the opponents are poker-bots it can happen
that they will repeat the same actions even if they are losing
or winning more often than living players. A poker-bot can
extend the number of chips from an opponent when a play
pattern is detected and repeated more frequently.

The University of Alberta developed a poker-bot called Poki
[4] which uses opponent modeling with the help of a weight
table. A weight table is a group of variables collected in
a single table. Values of the table are called weights. The
weights in the table are changed according to the method
of modeling. The modeling technique focuses on all possi-
ble starting hands because each opponent plays a different
strategy.

The University in New Zealand developed poker modeling
with the help of machine learning techniques. They used
decision trees and artificial neural networks [6].

This article is organized as follows. Section 2 shows the ba-
sics about the Texas Hold’em poker game. What are the
poker actions and what are the end combinations which de-
cide the winner. Section 3 presents our algorithm for find-

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 33

ing patterns with the help of communication protocol. A
version of an algorithm with and without finding patterns
approaches is presented in Section 4. Section 5 concludes
this paper.

2. TEXAS HOLD’EM BASICS
Poker is part of card games where the end combinations are
ranked. Poker games are unique because of betting rounds.
The game has two main parts: preflop and postflop [2].

Preflop is part of the game with pocket cards. Each player
gets two closed cards hidden to other players. There is only
one round of betting. From a deck of 52 cards it is possible
to form 1326 different starting hands [5]. The best starting
hand is pocket aces and the worst is 7 and 2 offsuit (different
colors). There are two manditory bets called small blind and
big blind. The player next to dealer must pay the small blind
bet and the player next to him must pay the big blind bet.
Blinds are set before the start of current game. Big blind is
normally two times bigger then the small blind value.

Postflop is part of a game where the community cards are
visible to all the players. There are 3 levels (flop, turn and
river) and 3 rounds of betting. 3 community cards are added
on the flop and one each for turn and river. The player with
the best combination of 5 cards (pocket cards and commu-
nity cards) is the winner.

End combinations:

• royal flush: A K Q J T suited,

• straight flush: five suited consecutive cards
(e.g. 4 5 6 7 8),

• quads: four cards with the same value
(e.g. 7 7 7 7 *),

• full house: trips plus pair
(e.g. A A A Q Q),

• flush: five cards of the same color,

• straight: five offsuited consecutive cards
(e.g. 5 6 7 8 9),

• trips: three card of the same value
(e.g. 8 8 8 * *),

• two pairs:
(e.g. A A K K *),

• pair: two cards of the same value
(e.g. 9 9 * * *) and

• high card: (e.g. A * * * *).

Poker actions:

• CHECK − player is not betting and the right to play
moves to the next player.

• BET or RAISE − player pushes desirable amount of
chips into play.

Table 1: Preflop action patterns
Patterns Poker actions

fold to bet rf
re-raise rr

call bet from 1st position rc
limp raise cr

call to re-raise bet from 1st rrc
fold to re-raise bet from 1st rrf

• RE-RAISE − player pushes higher amount of chips
into play than the player before him.

• CALL − player equals the amount of chips from the
bet.

• FOLD −player is out of the current game.

• ALL-IN − player pushes all of the chips into the game.

3. COLLECTING INFORMATION ABOUT
OPPONENTS

The most important fact when collecting information about
opponents is how often they fold or how often they call
a raise of our poker-bot. The algorithm searches through
the history of games for patterns where the opponents were
forced to fold because of bad cards or because of too high
bets and for situations where opponents called raises when
a poker-bot had weak starting hands. When a pattern was
discovered the poker-bot was trying to play the same com-
bination more often. We defined variables for some possi-
ble actions and then incremented the values when they ap-
peared. We calculated the percentage values based on the
number of played games. With the help of percentage val-
ues we defined poker-bot actions. When an opponent folds
more frequently it is better to check/call the actions to gain
more chips. If the opponent is an aggressive player then a
good strategy is to play passive and tight and wait for good
starting hands because the amount of gaining chips will be
raised.

Collecting information was separated for preflop and post-
flop. For preflop games the key fact was how often the op-
ponent called or re-raised bets from the 1st position and for
the postflop games how often the opponent folded to bets or
re-raised them.

3.1 Collecting information on the preflop game
During the preflop phase of poker game the algorithm searches
for action patterns as shown in Table 1. First two lines of
Table 1 are common patterns for preflop and are possible
in every single game. The next two lines are possible only
when poker-bot starts the preflop game. The last two lines
cover three actions and the opponent must start the preflop
game.

The poker-bot Rembrant tries to play almost every preflop
hand. The exception is when the starting cards are not very
good. In this case the poker-bot will try to minimize the
amount of chips so that the flop community cards will be
as cheap as possible. The important fact is the percentage
of games where opponent is betting after limping from the

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 34

Table 2: Postflop action patterns
Patterns Poker actions

fold to bet rf
fold to re-raise rrf

call bet rc

1st position. If the percentage is high then the poker-bot
Rembrant will not limp from preflop and will fold instead.
A high percentage of opponent preflop raise is optimal when
starting cards are good. In this case the poker-bot wants as
many chips as possible in the pot.

3.2 Collecting information on the postflop game
During the postflop phase of a poker game our algorithm
searches for action patterns shown in Table 2. The patterns
are equally balanced for all three postflop levels. We decided
to collect only the more common postflop actions here. In
Table 2 are only three actions. The first two lines of the table
present the patterns where the opponent folds to bet or re-
raise. The last line of the table shows the pattern where the
opponent is calling the bets. This pattern can occur more
than once during a single game.

Every time before making an action in the postflop game the
variables for the patterns are checked. The most important
one is the call bet variable. When the percentage of calls
is high then the poker-bot will try not to raise in case of
semi-bluff situations. Instead he will try to get the next
community card for free or for low price. Aggressive play is
suitable only when the fold variables have high percentages.
If the fold and call variables have low percentage value then
poker-bot will try to play tight aggressive - raise only with
good cards and fold in the case of weak end combination, to
any bet of the opponent.

3.3 Collecting other information
Another very important thing to focus on is the amount of a
raise by the opponent. Our algorithm calculates the average
value of opponents raises through the preflop and postflop
games.

3.3.1 Preflop opponents average raise
In preflop we decided to track the raise from the 1st position
and the re-raise amount of the opponent. The average raise
was valid only after a certain number of games had been
played. This is important because the average raise value
must become stable and the new values can not change the
average too much. Preflop raise from the 1st position was
an average raise if the following condition was met.

oppRaise−2∗BigBlind < oppRaise < oppRaise+2∗BigBlind
(1)

If the raise amount was not within that range the poker-bot
starts to play careful − can mean that the opponent has
strong starting hands. When the average raise was over the
limit the weak starting hands are automatically folded. All
preflop raises from an opponent are called when the lower
average raise limit is not reached.

Normal preflop re-raise from an opponent is defined as:

oppReRaise > botRaise ∗ 3 (2)

If the re-raise amount of opponent was bigger than 3 times
the raise of poker-bot then the poker-bot continues to play
only with strong starting hands. Calling a big re-raise with
weak hand means loss of chips. If the poker-bot has good
starting cards (pocket pairs, AK or AQs) it will re-raise to
all-in. In the case of a normal re-raise, the weak starting
cards are folded anyway.

3.3.2 Postflop pot size
The raise amount in postflop is the same for all three levels
of postflop. The raise amount is no longer measured on the
raise of the poker-bot but on the pot size. Pot size is the
current amount of all the chips in the play.

We defined three different raise types:

• under pot raise.

• pot raise.

• over pot raise.

Under pot raise is a raise from opponent where the amount
of opponents’ raise is under the current pot size. Pot size
raise equals the amount of opponents’ raise. Over pot raise
is a raise from opponent where the amount of opponents’
raise is over the current pot size.

As normal raise we defined only the pot raise. That means
that the opponent is raising for as many chips as in the
current pot. The problems is when the opponent is betting
under or over the current pot size. When betting over the
pot size it can mean that he is bluffing and wants us to
fold the current hand. This is very common action on the
river when acting first - it can mean monster hand or air.
Variables for action patterns play an important role in this
scenario. If it is possible to detect the purpose of opponent’s
raise with variables poker-bot has an easy choice. Other way
around it is very hard to predict and in most cases the better
options is to fold if poker-bot has no good end combination.

In the case of under pot raise an opponent can have a very
strong end combination and wants some more chips. To
make under pot raise while bluffing is not a common ac-
tion because small pot bets are normally called every time.
Poker-bot will call all raises of opponents when the under
pot size conditions are fulfilled. Poker-bot is calling or re-
raising raises only with good end combinations. Hands with
multiple outs to hit a better end combination are called only
when a normal raise from opponent is played.

3.3.3 Opponent moves all-in
A very important fact to know is also how often an opponent
pushes all-in. All-in is a special bet or re-raise when the
player moves the entire stack into the game. Losing all-
in means game over. Players usually play all-in with the
best cards or good end combinations. All-in move is also
a good bluff method and can be performed in the preflop
and postflop phases of the game. When putting all chips in
play in the preflop game this is normally a coin flip situation
and a little luck is needed to win it. We defined a variable
which is counting the number of opponents all-in moves. If

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 35

Table 3: Results of Rembrant 3.0 and Rembrant 1.0
vs Lucky7

Experiment Rembrant 3.0 [chips] Rembrant 1.0 [chips]
1 38114 -2489
2 25198 8055
3 28961 7115

the percentage value is high that means that the opponent
is bluffing most of the time. In this case poker-bot will try
to call all-in moves from opponents more often with lower
ranked end combinations.

4. TESTING AND RESULTS
For testing we used the poker-bot Rembrant version 1.0 [7]
which does not use the algorithm for finding patterns. Our
latest version of the poker-bot Rembrant is 3.0 and it uses
an approach for finding repeated patterns. We wanted to
test and to see whether the introduced approach improved
our poker-bot. Comparison between two different versions
was not enough so we also tested our algorithm against a
poker-bot called Lucky7 [3] which was the result of another
team from our University. Lucky7 was one of the top 3
poker-bots at ACPC 2011 competition. Lucky7 is a poker-
bot which uses multi poker-bots to define the game action.
Every poker-bot has a different style of play and a voting
system defines the current game action.

The testing model was divided into two parts with 5000
hands. After the end of the first part the poker-bots switched
positions and the starting cards. All the collected informa-
tion from the bots were deleted. Switch players was impor-
tant to erase the factor of luck. Small blind is 50 and big
blind is 100. Both players have a starting stack of 20.000
chips to leave enough space for combinations. Starting stack
was reset after every single hand was played. Decks of cards
are generated with a random number generator. The gener-
ator used the same starting seed every experiment to ensure
the same deck of cards in every game.

4.1 Results
Table 3 shows the results of the experiment against the
Lucky7 poker-bot. Rembrant 1.0 was better only in the
first experiment of the test and lost the other two exper-
iments. All in all the Lucky7 poker-bot was better. The
results show that the Rembrant 3.0 poker-bot improved a
lot with the help of the approach for finding patterns in
opponents games. Rembrant 3.0 was better in all three ex-
periments and won a lot more chips from the opponent than
the previous version. The pattern approach helped the new
version of poker-bot to save chips in the cases of weak hands
and to gain more chips from opponents when its hands were
good. This was possible because Lucky7 is still a case based
poker-bot and its actions started to repeat after a certain
amount of time. The algorithm detected the repeated pat-
terns and tried to take advantage of them. With the help of
the algorithm it reduced the loss and improved the gained
chips by almost 4 times, to the version Rembrant 1.0.

In tests against better opponents poker-bot will not win all
the games but will reduce the amount of chips when playing
a losing hand. Reducing the chips when losing a hand is

crucial. Because opponents got better and they improved
their games and it got harder to get chips from them. To
protect the gained chips is therefore the key element of the
poker-bots and that is why reducing the losing chips is so
important.

5. CONCLUSION
We have introduced a simple approach for modeling op-
ponents actions by searching for patterns in history game.
Variables for each pattern were converted to nominal val-
ues of played games. The pattern approach is used before
making the final decision about the current action the pat-
tern approach is used. When a pattern is discovered current
action can change in order to improve the amount of chips
in play. In the case of losing hands poker-bot can decrease
the number of losing chips and in the opposite case it can
improve the number of winning chips. The results from Ta-
ble 3 shows that the algorithm for patterns is effective and
improved the previous version of poker-bot Rembrant. The
latest version won more chips from opponents than the pre-
vious one.

For future work we will try to add more pattern variables to
the algorithm. An increased number of variables would give
a much better overview over the actions from the opponents.
We will also try to improve the current game actions when
a play pattern is discovered to gain even more chips from
opponent or to lose less chips. One of our goals is also to
create a virtual simulation of the current game with all pos-
sible future actions to see how a single action of poker-bot
can effect opponents games.

6. REFERENCES
[1] Annual computer poker competition.

http://www.computerpokercompetition.org/.
Accessed: 2014-08-10.

[2] S. Braids. The intelligent guide to Texas Hold’em poker.
Intelligent Games Publishing, 2003.

[3] B. Butolen, S. Zemlic, M. Cof, and M. Zorman. Lucky7
poker playing multi agent system.
http://www.computerpokercompetition.org/

downloads/competitions/2011/presentations/Team_

Lucky7_Poster.pdf. Accessed: 2014-08-29.

[4] A. Davidson, D. Billing, J. Shaeffer, and D. Szafron.
Improved opponent modeling in poker. Proceedings of
The 2000 International Conference on Artificial
Intelligence (ICAI’2000), Las Vegas, Nevada, pages
1467–1473, 2000.

[5] R. D. Harroch and L. Krieger. Poker for dummies.
Wiley Publishing, 1997.

[6] McNally, Patrick, Raffi, and Zafar. Opponent modeling
in poker using machine learning techniques,
northwestern university.
http://www.cs.northwestern.edu/~ddowney/

courses/349_Fall2008/projects/poker/Poker.pdf.
Accessed: 2014-08-20.

[7] G. Vohl, B. Boskovic, and J. Brest. A rembrant poker
bot program. Elektrotehniski vestnik, 79(1-2):13–18,
January 2012.

[8] M. J. Whitman and M. Shubik. The Aggressive
Conservative Investor. Random House, New York, 1979.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 36

Histogram of Oriented Gradients Parameter Optimization
for Facial Expression Recognition

Uroš Mlakar
University of Maribor

Smetanova 17
Maribor, Slovenia

uros.mlakar@um.si

ABSTRACT
This paper proposes a method for optimal parameters re-
garding the Histogram of Oriented Gradients (HOG) filter.
Differential evolution (DE) was used for the HOG param-
eter tuning using images from the MMI Facial expression
database. The database was split into three parts: training,
development and testing set. HOG parameters were tuned
on the development set. The obtained result show an im-
provement of the evolved parameters during the evolution,
while the experiments on the testing set failed to provide a
better performance in the end.

Keywords
Facial expression recognition, histogram of oriented gradi-
ents, evolutionary algorithm, feature selection, differential
evolution

1. INTRODUCTION
Facial expression recognition has been a very interesting
topic since the early 90s. There have been many advances
over the past decade in the areas of face detection, face
tracking, feature selection and facial expression recognition.
Facial expressions are a very powerful tool for humans to
communicate, show emotions and their intentions, and thus
makes facial expression recognition an interesting research
topic in the area of human-computer interaction. Over re-
cent years facial expression recognition has gained attention
because of its wide of applications, which reach many differ-
ent areas like computer graphics, robotics, security, driver
safety, etc. The main goal of researchers in the field is to
build rich and responsive graphical user interfaces. The most
promising application is the application of driver attention
control. When the driver looses attention (sleepiness) the
car automatically slows down [11] [6]. Regardless of the
advancement of technology, facial expression recognition re-
mains a difficult task to this day. Researches in the area
of facial expression recognition usually focus on recogniz-
ing six prototypic emotional states: ’Disgust’, ’Anger’, ’Sur-

prise’, ’Fear’, ’Happiness’, and ’Sadness’. Each of the six
emotional states can be seen in Figure 1.

Figure 1: Six prototypic emotions [1]

Facial expression recognition applications can be divided
into two areas, depending on how the facial features are
extracted: geometric feature-based and appearance-based
methods. The main difference between the two, without go-
ing into detail, is the way information is extracted from the
face image. With appearance based methods, a filter is usu-
ally applied to the face image, while geometric feature-based
methods rely heavily on the shapes of important facial fea-
tures i. e. eyes, mouth, nose, and wrinkles. In this paper
appearance-based methods were used for facial expression
recognition. A facial expression recognition system usually
consists of three parts: namely face detection/tracking, fa-
cial feature selection and facial feature classification. In the
first part a face is detected using the Viola-Jones detector or
the active appearance models. The next step after localizing
the human face is to extract facial features. Such features are
used to describe the facial expression and, consequently, the
emotion of monitored person in the digital image or video
clip. The focus of this paper was the facial feature selection
part, where an evolutionary algorithm (EA) was used to se-
lect the optimal parameters for the appearance descriptor
Histogram of Oriented Gradients (HOG), to achieve maxi-
mum facial expression recognition efficiency. The last part
of a facial expression recognition system is a classification
module, which classifies extracted facial features into one
prototypic emotion (usually into six or seven emotions).

The rest of the paper is organized as follows. In Section 2
some of related work is presented in the area of feature selec-
tion. In Section 3, an EA will be presented, which was used
for this study, then in section 4 HOG appearance descrip-

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 37

tor will be described. In Section 5 we present the proposed
method and in Section 6 the results will be presented. With
Section 7 we will conclude this paper with some findings.

2. RELATED WORK
A number of works in parameter optimization/tuning using
evolutionary algorithms have been made. In [10] a genetic
algorithm (GA) was used for optimizing the parameters of a
set of Gabor filters for the purpose of on-road vehicle detec-
tion. Liu et. al [7] used GA for face recogition. The origi-
nal data was projected to a lower dimension using principal
component analysis (PCA), where the rotations of the basis
vectors were optimized using a fitness function defined by
performance accuracy and class separation. Yen et. al [12]
used GA for optimal ellipse parameters estimation for facial
feature extraction.

3. EVOLUTIONARY ALGORITHM
An evolutionary algorithm is a generic population-based op-
timization algorithm. It uses mechanisms which are inspired
by biological evolution, such as reproduction, mutation, re-
combination, and selection. The solutions for the optimiza-
tion problems are the individuals in the population, and the
fitness function provides a metric for measuring the quality
of the solutions. In this paper an EA called differential evo-
lution (DE) has been used for optimal parameter selection
of the HOG filter. Hereinafter the DE algorithm will be
described in detail.

3.1 Differential Evolution
Differential evolution (DE) [9] is a population based opti-
mization algorithm used for global optimization. It is sim-
ple, yet very effective in solving various real life problems.
The idea of DE is a simple mathematical model, which is
based on vector differences.

The population of the DE algorithm consists of Np individ-
uals xi, where i = 1, 2, ..., Np, and each vector consists of
D-dimensional floating-point encoded values xi = {xi,1, xi,2,
xi,1, ..., xi,D}. In the evolutionary process, individuals are
evolved using crossover, mutation and selection operators,
which are controled by a scale factor F and crossover rate
Cr. The following mutation strategy was used:

mi = xr1 + F ∗ (xr2 − xr3). (1)

For the creation of a mutant vector mi, three random vec-
tors from the population are selected, defined by indexes
r1, r2 and r3. indexes are mutually different and differ-
ent from i. They are selected uniformly within the range
{1, 2, ..., Np}. The scale factor F is defined within the range
[0, 2]. The mutant vector mi is obtained by adding a scaled
vector difference to a third vector.

The trial vector ti is then generated using the crossover rate
Cr and a corresponding vector xi from the population as:

ti,j =

{
mi,j if rand(0, 1) ≤ Cr or j = jrand,

xi,j otherwise.
(2)

As can be seen from Eq. 2, the crossover rate Cr is defined
at the interval [0, 1] and it defines the probability of creating
the trial vector parameters ti,j . The jrand index is responsi-
ble for the trial vector to contain at least one value from the
mutant vector. After crossover, some values of the vector
may be out of bounds, meaning that these values must be
mapped to the defined search space.

The next step in the evolutionary process is the selection of
the fittest individuals. During the selection process the trial
vector ui, competes with vector xi from the population. The
one with the better fitness value survives and is transfered
to the next generation.

4. HOG DESCRIPTOR
Histograms of oriented gradients (HOG) were developed by
Dalal and Triggs [4] in 2005. They are based on orientations
of image gradients and have been widely used for pedes-
trian detection. Some researchers have tried it for facial
expression recognition problems and obtained very good re-
sults. Orrite et al. [8] proposed a facial expression recog-
nition system based on class specific edge distribution and
log-likelihood maps, the latter were used for building a list
of HOG features supplemented by SVM classifier. Exper-
iments on the CK database pointed out 83.3% recognition
rate. Gritti et al. [5] studied HOGs, local binary patterns
(LBP) and local ternary patterns (LTP) for emotion recog-
nition. Recognition rate of 92.9% on the CK database was
obtained by using the LBP appearance descriptors. The idea
of the descriptor is very simple, yet it provides a powerful de-
scription of the object within the image. The feature vector
obtained with the HOG descriptor is calculated on a grid
of uniformly spaced cells, which are grouped into overlap-
ping blocks, which account for contrast normalization. Let
us take a closer look at the parameters with the following
example:

Bins Cell size Block size Orientation Clip value
9 16 2 0 0.2

In the provided example an image is divided into cells which
are 16×16 pixels in size. Within each cell gradients are com-
puted using the filter [-1 0 1] in both directions. The orienta-
tions are then placed into 9 evenly distributed bins. Whether
oriented gradients are used, the bins are distributed from 0◦

to 360◦ or 0◦ to 180◦ otherwise. These cells are then grouped
together into 2 × 2 blocks. In the final stage all values in
the feature vector are clipped using the clipping value. In
Figure 2 HOG feaure vector calculation is presented. For
more information refer to [4].

5. PROPOSED METHOD
In this section we will briefly describe our algorithm for opti-
mal parameter selection of the HOG appearance descriptor.
The values of the HOG filter were described in Section 4, so
we will not go into detail about them here. All parameters
were bound by lower and upper bounds as:

• Bin size [8, 16],

• Cell size [8, 16],

• Block size [2, 5],

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 38

Figure 2: HOG feature vector calculation [4]

• Orientation [0, 1],

• Cliping value [0, 1].

All values, except the cliping value, are rounded to inte-
ger values at the time of evaluation. Parameter selection
was done in the following matter. After each generation
of DE all individuals were evaluated in the following way:
Each image in the training set was transformed using the
current individual xi of HOG parameters, giving a feature
vector f . All vectors f were sorted according to the emo-
tion label of the images. With that in mind, after sorting,
we ended up with six types of feature vectors, each belong-
ing to a prototypic emotion. The next step was to evaluate
the efficiencies of the current set of HOG parameters using
a classifier. The classifier used in this paper was support
vector machines (SVM) using a radial basis function kernel.
An implementation of SVM from the LibSVM toolbox [3]
was used. A 5-fold-cross validation was carried out in order
to find optimal parameters for SVM and our classification
problem. Six SVMs were built, each to distinguish one emo-
tion from the others. All images in the development set were
transformed to feature vectors, and then classified using the
trained SVMs. The final output of the evaluation procedure
of a single HOG parameters’ set is a metric called efficiency
of EA (EEA) (Eq. 3), which is defined as:

EEA =
Nd

Ad
∗ 100, (3)

where Nd is the number of correctly classified images and
Ad the total number of all images in the development set.

Lastly we must also mention the jDE strategy which was
used in this paper. As mentioned in Section 3, the DE al-
gorithm has three control parameters: Np, F and Cr. The
values of these control parameters are usually problem de-
pendent, and their values adapt during the evolutionary pro-
cess. A self-adaptive control strategy was used as in [2] for
the control of values F and Cr. With the inclusion of con-
trol parameters during the evolution, each individual in the

population had the form of {xi,1, xi,2, xi,1, ..., xi,D,Fi,Cri}.
In each generation right before the mutation operation, the
new values of F and Cr are computed using the following
equations:

Fi =

{
Fl + rand(0, 1) ∗ Fu if rand(0, 1) ≤ τ1,
Fi otherwise

(4)

Cri =

{
rand(0, 1) if rand(0, 1) ≤ τ2,
Cri otherwise.

(5)

τ1 = 0.1 and τ2 = 0.1 in Eq. 4 and 5 are probabilities
for adapting the values of F and Cr. Fl and Fu define the
interval on which the factor value F is defined.

6. RESULTS
In this section, the obtained results are presented, and also
the experimental environment is described.

6.1 Experimental environment
Our method was validated on a publicly available dataset
called the MMI Facial Expression database. The MMI database
is a web searchable collection of video clips and images in
which the subjects display a wide variety of facial expres-
sions. Subjects differ in age, ethnicity and sex. There are a
total of 69 subjects in the database. Some videos have been
annotated with emotions labels. For testing purposes only
those subjects from the MMI database having emotions la-
bels were selected. Thus, human face images from just 27
volunteers were used in our evaluation procedure. Because
data in the MMI database is in the form of video clips, those
frames had to be extracted, where the displayed emotion was
at the peak (apex) throughout its duration. In other words,
just those frames where emotions were the most expressive
were selected in our analysis (3 frames).

All the acquired frames were then split into three subsets:
training, development and testing set. By splitting the database
attention was paid that no subject appeared in two sets at
the same time (all three sets were unique). That gave us a
total of 10 subjects for the testing set, 10 for the training
set and 6 for development. In Table 1 we can see the total
number of images per emotion in the whole dataset, while
Table 2 presents a total of images per splited dataset.

Table 1: Number of images per emotion in the whole
dataset

Dis. Ang. Sur. Fea. Hap. Sad. Σ

102 108 132 105 132 108 687

The split was done randomly, with 40 % of all subjects se-
lected for training(10), another 40 % for testing(10) and 20
% for the development set(6).

6.2 Experimental results
The following settings of the DE were used for the experi-
ments in this paper : Np was set to 20, G to 100, while the

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 39

Table 2: Number of images in each dataset
Training Development Test

249 147 291

F and Cr were set to 0.9 and 0.1 respectively at the start of
the evolutionary process. The Np and G were set to smaller
values so the results could be obtained in reasonable time.
In each generation Np ∗ 6 classifier learning was done.

In Figure 3 the results of the best, worst, median and mean
are reported for each generation on the development set .
It can be seen from the graph that the DE algorithm was
successful in tuning the optimal parameters on the develop-
ment set. For the final experiment we also tried the tuned
HOG parameters on the test set and compared them to the
randomly generated parameters in the first generation. The
results of the comparison are collated in Table 3.

Table 3: Comparison between the first and last gen-
eration parameters on the test set

1st generation 100th generation

best 394.37 389.32
worst 100.00 340.70

After testing the tuned parameter sets on the testing set of
the MMI database the experiment showed intersting results.
The best parameter set in the last generation gave worse re-
sult then the best in the first generation, in spite of giving
better results on the development set. We investigated the
cause of this problem and found an answer in the database
itself. The MMI Facial expression database mostly contains
videos of subjects which are performing spontaneous emo-
tional responses, that we try to classify as six emotional
states. The problem at hand is that each subject expresses
emotions in their own particular way. Because the training,
development and test sets were completely independent of
each other, and because of the way people show spontaneous
emotions, the obtained results are slightly worse than those
on the development set.

Figure 3: Graph of best, worst, mean and median
for each generation during tuning on development
set

7. CONCLUSION
This paper proposed a method for optimal HOG descrip-
tor parameters selection using the self-adaptive DE. It was
tested on a publicly available Cohn Kanade dataset, which
was separated into three sets: testing, training and devel-
opment. The HOG parameter tuning was done with the
help of the training and development sets. The results show
an improvement in selecting the appropriate HOG param-
eters on the development set. Due to fairly large feature
vectors, the learning part of the proposed method was very
time consuming, therefore smaller values for Np and G were
selected. The obtained results from tuning were also tested
on the testing set. A comparative study was made between
the best and worst results of the tuning parameters in the
first and last generations on the test set. Because of the
spontaneous emotions displayed by subjects in the MMI Fa-
cial expression database the results in the case of the best
tuned parameter in the last generation gave worse results
than those in the first generation.

In the future we would like to address the problem of spon-
taneous emotions during HOG filter parameter optimiza-
tion, and also test the proposed algorithm on more available
datasets.

8. REFERENCES
[1] Six prototypic emotions.

https://managementmania.com/en/six-basic-
emotions. Accessed:
2014-07-18.

[2] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and
V. Zumer. Self-adapting control parameters in
differential evolution: A comparative study on
numerical benchmark problems. Evolutionary
Computation, IEEE Transactions on, 10(6):646–657,
2006.

[3] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27,
2011. Software available at
urlhttp://www.csie.ntu.edu.tw/ cjlin/libsvm.

[4] N. Dalal and B. Triggs. Histograms of oriented
gradients for human detection. In Cordelia Schmid,
Stefano Soatto, and Carlo Tomasi, editors,
International Conference on Computer Vision &
Pattern Recognition, volume 2, pages 886–893, INRIA
Rhône-Alpes, ZIRST-655, av. de l’Europe,
Montbonnot-38334, June 2005.

[5] T. Gritti, C. Shan, V. Jeanne, and R. Braspenning.
Local features based facial expression recognition with
face registration errors. In Automatic Face & Gesture
Recognition, 2008. FG’08. 8th IEEE International
Conference on, pages 1–8. IEEE, 2008.

[6] Qiang Ji and Xiaojie Yang. Real-time eye, gaze, and
face pose tracking for monitoring driver vigilance.
Real-Time Imaging, 8(5):357–377, 2002.

[7] C. Liu and H. Wechsler. Evolutionary pursuit and its
application to face recognition. Pattern Analysis and
Machine Intelligence, IEEE Transactions on,
22(6):570–582, 2000.

[8] C. Orrite, A. Gañán, and G. Rogez. Hog-based
decision tree for facial expression classification. In

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 40

Pattern Recognition and Image Analysis, pages
176–183. Springer, 2009.

[9] R. Storn and K. Price. Differential evolution–a simple
and efficient heuristic for global optimization over
continuous spaces. Journal of global optimization,
11(4):341–359, 1997.

[10] Z. Sun, G. Bebis, and R. Miller. On-road vehicle
detection using evolutionary gabor filter optimization.
Intelligent Transportation Systems, IEEE
Transactions on, 6(2):125–137, 2005.

[11] Mohan M Trivedi, Tarak Gandhi, and Joel McCall.
Looking-in and looking-out of a vehicle:
Computer-vision-based enhanced vehicle safety.
Intelligent Transportation Systems, IEEE
Transactions on, 8(1):108–120, 2007.

[12] G. G. Yen and N. Nithianandan. Facial feature
extraction using genetic algorithm. In Evolutionary
Computation, 2002. CEC’02. Proceedings of the 2002
Congress on, volume 2, pages 1895–1900. IEEE, 2002.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 41

42StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October

Constructing domain-specific semantic dictionaries to
supplement domain-specific knowledge bases

Goran Hrovat
∗

University of Maribor
Faculty of Electrical Engineering and Computer

Science
Smetanova 17, 2000 Maribor

Slovenia
goran.hrovat@um.si

Milan Ojsteršek
University of Maribor

Faculty of Electrical Engineering and Computer
Science

Smetanova 17, 2000 Maribor
Slovenia

milan.ojstersek@um.si

ABSTRACT
Semantic dictionaries as well as knowledge bases are im-
portant source of information for natural language process-
ing. Using corpus and algorithms for constructing semantic
space, we can quickly construct semantic dictionary, which
is exploit to supplement the knowledge base. Algorithm for
constructing semantic space, COALS was chosen. Semantic
distance between terms in semantic space reveals their sim-
ilarity, which is used to add semantic relationships in the
dictionary. Semantic dictionary also serves to assist in iden-
tifying entities and in relation extraction, to supplement the
knowledge base.

Keywords
semantic space, correlation, semantic dictionary, knowledge
base

1. INTRODUCTION
Semantic dictionaries play important role in tasks of natural
language processing (e.g., named entity recognition [1], rela-
tion extraction [2], information extraction [3] [4]) as well as
knowledge bases. In semantic dictionary relations between
words are defined, such as hypernym, hyponym, antonym,
synonym, etc. Knowledge base is even more complex, where
any possible relation can be defined between terms to con-
struct graph. It is usually represented in RDF format. An
example of semantic dictionary is WordNet [5] and an ex-
ample of knowledge base is DBpedia [6]. Some approaches
for dictionary construction have already been proposed in
the past. Xu et al. [7] constructed a medical dictionary of
disease terms from randomized clinical trials (RCT) using
an automated, unsupervised, iterative pattern learning ap-
proach. Navigli et al. [8] developed an automatic method for

∗Corresponding author

constructing BabelNet, a wide-coverage multilingual knowl-
edge resource. The method is consisted of two steps, where
the first step produces a mapping between a multilingual en-
cyclopedic knowledge repository (Wikipedia) and a compu-
tational lexicon of English (WordNet). The second step fur-
ther use a machine translation system to collect a very large
amount of multilingual concept lexicalization. Morsey et
al. [9] constructed DBpedia which continually extracts struc-
tured information from Wikipedia and store them in files
as RDF triples. This article proposes the method for con-
structing domain-specific semantic dictionary using domain-
specific corpus or collection of documents in order to sup-
plement domain-specific knowledge base.

2. ISSUES AT CONSTRUCTING DOMAIN-
SPECIFIC SEMANTIC DICTIONARIES

The main requirements for constructing domain-specific se-
mantic dictionary are domain-specific knowledge and domain-
specific corpus. For domain-specific corpus bachelor thesis,
journals etc. can be used. For domain-specific dictionary a
bag of words from corpus are considered and further ana-
lyzed. All words are morphologically tagged and stop words
such as pronouns and conjunctions are excluded. The most
important feature of semantic dictionaries is relations be-
tween words. The examination of n2 word pairs in case of
n words need to be done to define relations (e.g. hyper-
nym) between all word pairs. Because of such amount of
pairs manual examination is unfeasible and some automatic
or semi-automatic approach is necessary.

3. CONSTRUCTING DOMAIN-SPECIFIC DIC-
TIONARY USING SEMANTIC SPACE

To reduce the n2 problem space, algorithms for construct-
ing semantic space is incorporated in our method. Semantic
space is high dimensional space where each word is placed
based on its meaning. Words in this space close to each other
by specific measure (e.g. Euclidean distance, cosine dis-
tance, correlation distance) are therefore semantically close,
which can be exploit for efficiently constructing semantic
dictionary. To place words in semantic space one of the se-
mantic algorithms is performed on corpus. The most known
algorithms for constructing semantic space are HAL [10],
LSA [11], Random Indexing [12], COALS [13] and some al-
gorithms based on dictionary WordNet [14], which do not
use corpus. In our case COALS is used on bachelor theses

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 43

of University of Maribor. All documents had been processed
where unimportant part of texts (e.g. table of contents, ref-
erences) were excluded.

3.1 Corpus preprocessing
Domain-specific corpus is required for using COALS (Corre-
lated Occurrence Analogue to Lexical Semantic). In our case
the bachelor theses from University of Maribor from the field
of computer science are used. Bachelor theses are in PDF
format, loaded in digital library of University of Maribor by
students. Preprocessing of the corpus was performed in next
phases:

1. Converting PDF format to plain text using Apache
Tika [15].

2. Segmentation of each the bachelor thesis to first page,
table of content, table of figures, content and refer-
ences.

3. Tokenization of the documents’ contents.

4. Morphologically tagging and lemmatization of the doc-
uments’ contents using TreeTagger [16] learned on mor-
phologically tagged corpus FidaPlus [17].

5. Only semantically meaningful words, meaningful verbs,
nouns, adjectives, adverbs and abbreviations are pre-
served. Other morphological types do not reflect se-
mantics of the text and are therefore excluded.

6. Converting to lower case letters.

3.2 Calculating semantic vectors using algo-
rithm COALS

Semantic vector of the word represents the word in the se-
mantic space. Semantic vector is also context vector, be-
cause it contains encoded context of the word. Algorithm
COALS calculates semantic vectors in the next phases.

1. Construction of the co-occurrence matrix, where each
row represents observed word and each column repre-
sents context word frequency. This matrix is called
word by word matrix in comparison with more known
LSA where word by document matrix is constructed.
For observed word weights of context words are incre-
mented according to its occurrence in text. In our case
window of four words is used, which means that next
the nearest context word get weight of 4, one context
word away get weight of 3, etc. In contrast, LSA uses
whole document window where all words are weighted
equally. Number of columns or dimensionality of se-
mantic vectors depends on the number of unique words
in corpus. Because the number of unique words can be
large we can limit it to 100,000 most frequent words
and thus limit the dimension to 100,000.

2. The matrix is then transformed using correlation nor-
malization to reduce the impact of high frequencies.
Correlation normalization is calculated with Equation 2.

T =
∑
i

∑
j

wi,j (1)

w′a,b =
T −

∑
j wa,j

∑
i wi,b√∑

j wa,j(T −
∑

j wa,j)
∑

i wi,b(T −
∑

i wi,b)

(2)

3. Each cell in the matrix is further transformed with
Equation 3.

ai,j =

{
0, x < 0√
x x ≥ 0

(3)

4. Last step is dimensionality reduction of vectors which
is performed using SVD (singular value decomposi-
tion) [18] shown in Equation 4. In our case dimension
was reduced to 800.

M = UΣV ∗ (4)

3.3 Semantic similarity
Semantic similarity between words is calculated using their
semantic vectors. For calculating similarity between two se-
mantic vectors well known similarity measures are used. In
case of HAL Euclidean distance is used, for LSA cosines dis-
tance is used and in our case for COALS correlation distance
is used on the two vectors presented in Equation 5.

Sa,b =

∑
(ai − ā)(bi − b̄)√∑

(ai − ā)2
∑

(bi − b̄)2
(5)

Equation 5 returns similarities between -1 and 1 where 0
means no correlation between words and values 1 or -1 mean
strong correlation between words. On Fig. 1 words are pre-
sented in two dimensional semantic space. For representa-
tional purposes dimension is reduced from 800 to 2 using
MDS (multidimensional scaling) [19] where correlation sim-
ilarity is used as a distance measure. Three different groups
are marked for clear presentation of the method. Words
mac and widows are close together, which means that they
appear in similar context, but not necessary together.

Figure 1: Visualization of the words in two dimen-
sional space

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 44

3.4 Preparation of the results of COALS
Algorithm COALS is used to compute semantic vectors where
correlation similarity metric gives us similarity between the
words. Values closer to 1 or -1 mean stronger similarity
whereas 0 means no similarity. Using this information the
data can be prepared for constructing semantic dictionary
where experts can define type of relations for their domain.
Word pairs is then ordered by correlation absolute value in
descending order so an expert can consider the most similar
word pairs first. Construction of the semantic dictionary is
much faster using this method.

3.5 Construction of the semantic dictionary and
relations

An expert defines relations between the most interesting
word pairs in the semantic dictionary. The interestingness
is calculated with the algorithm COALS, what significantly
reduces the number of interesting word pairs. An expert
has some definitions predefined however his own can also be
added. Predefined relations are:

• synonym (two words are synonyms, when they have
same meaning)

• antonym (two words are antonyms when they have op-
posite meaning)

• hypernym (word A is a hypernym of word B, if A has
more general meaning)

• hyponym (word A is a hyponym of word B, if A has
more specific meaning)

• meronym (word A is a meronym of word B when A is
a part of B, e.g., CPU is a meronym of computer)

• holonym (inverse relation of a merony, e.g., computer
is a holonym of CPU)

• troponym (word A is a troponym of word B when A
more specifically expresses an action of B, e.g., typing
is a troponym of writing)

• coordinate word (word A and B are coordinate words
to each other, when they have same hypernym, e.g.
CD and DVD are coordinate words, because they have
same hyperny medium)

• related word (when expert can define any of the above
mentioned relations, then he can define his own rela-
tion or set only that word A and B are related words)

4. SUPPLEMENTING DOMAIN SPECIFIC
KNOWLEDGE BASE

Domain specific knowledge base contains only knowledge
from the single domain. Knowledge base is represented with
an ontology where also rules are defined used for reasoning.
Knowledge base can also contain relations from semantic
dictionary, which can be supplemented from the corpus us-
ing the methods of natural language processing (e.g., named
entity recognition, relation extraction). For each relation its
frequency can be also acquired using the corpus.

4.1 Named entity recognition
Named entity recognition can further improve the semantic
dictionary. It is useful for defining hypernyms and is also
prerequisite for relation extraction. Named entity recogni-
tion is used for recognition of people, animals, location, time
etc. If dog is recognized as an animal, can be that inserted
in the domain specific knowledge base.

4.2 Relation extraction
Relation extraction enables us to find relations between the
words from the corpus, which are then inserted into the
knowledge base. For relation extraction patterns are needed
which define relations. Examples of the patterns for relation
”is husband of” is shown in Table 1.

Table 1: Examples of the patterns for relation ”is
husband of” used for relation extraction
Pattern Relation ”is husband of”
A is husband of B A ”is husband of” B
A has wife B A ”is husband of” B
A is married with B if A is male then

A ”is husband of” B
else

B ”is husband of” A
A and B went on if A is male then
the honeymoon A ”is husband of” B

else
B ”is husband of” A

Semantic dictionary can be used for manually defining the
patterns for relation extraction, which can serve us for im-
proving knowledge base.

5. CONCLUSION
The paper presents the method for constructing domain spe-
cific dictionaries using domain specific corpuses. The use of
the algorithm COALS for constructing semantic dictionary
is presented. The COALS is crucial for reducing the number
of word pairs, which an expert need to consider to define
relations between them. On Fig. 1 results of the COALS
is shown for some interesting words. In subsection 3.5 some
relations are defined however an expert is encouraged to cre-
ate their own. In section 4 the procedure for supplementing
knowledge base is presented using named entity recognition
and relation extraction. For further research on supplement-
ing knowledge base, methods of machine translation can be
incorporated.

6. ACKNOWLEDGEMENT
We thank the authors of the FidaPLUS corpus, who grant
us its use for morphological tagging and lemmatization.

7. REFERENCES
[1] D. Nadeau and S. Sekine, “A survey of named entity

recognition and classification,” Lingvisticae
Investigationes, vol. 30, no. 1, pp. 3–26, 2007.

[2] A. Schutz and P. Buitelaar, “Relext: A tool for
relation extraction from text in ontology extension,” in
The Semantic Web–ISWC 2005, pp. 593–606,
Springer, 2005.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 45

[3] E. Tutubalina and V. Ivanov, “Unsupervised approach
to extracting problem phrases from user reviews of
products,”

[4] A.-M. Popescu and O. Etzioni, “Extracting product
features and opinions from reviews,” in Natural
language processing and text mining, pp. 9–28,
Springer, 2007.

[5] G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and
K. J. Miller, “Introduction to wordnet: An on-line
lexical database*,” International journal of
lexicography, vol. 3, no. 4, pp. 235–244, 1990.

[6] “Dbpedia.” http://dbpedia.org. Accessed: 2014-09-25.

[7] R. Xu, K. Supekar, A. Morgan, A. Das, and
A. Garber, “Unsupervised method for automatic
construction of a disease dictionary from a large free
text collection,” in AMIA Annual Symposium
Proceedings, vol. 2008, p. 820, American Medical
Informatics Association, 2008.

[8] R. Navigli and S. P. Ponzetto, “Babelnet: The
automatic construction, evaluation and application of
a wide-coverage multilingual semantic network,”
Artificial Intelligence, vol. 193, pp. 217–250, 2012.

[9] M. Morsey, J. Lehmann, S. Auer, C. Stadler, and
S. Hellmann, “Dbpedia and the live extraction of
structured data from wikipedia,” Program: electronic
library and information systems, vol. 46, no. 2,
pp. 157–181, 2012.

[10] K. Lund and C. Burgess, “Producing high-dimensional
semantic spaces from lexical co-occurrence,” Behavior
Research Methods, Instruments, & Computers, vol. 28,
no. 2, pp. 203–208, 1996.

[11] T. K. Landauer, P. W. Foltz, and D. Laham, “An
introduction to latent semantic analysis,” Discourse
processes, vol. 25, no. 2-3, pp. 259–284, 1998.

[12] M. Sahlgren, “An introduction to random indexing,”
in Methods and applications of semantic indexing
workshop at the 7th international conference on
terminology and knowledge engineering, TKE, vol. 5,
2005.

[13] D. L. Rohde, L. M. Gonnerman, and D. C. Plaut, “An
improved method for deriving word meaning from
lexical co-occurrence,” Cognitive Psychology, vol. 7,
pp. 573–605, 2004.

[14] W. D. Lewis, “Measuring conceptual distance using
wordnet: the design of a metric for measuring
semantic similarity,” 2001.

[15] “Apache. tika..” http://tika.apache.org/. Accessed:
2014-09-25.

[16] H. Schmid, “Probabilistic part-of-speech tagging using
decision trees,” in Proceedings of the international
conference on new methods in language processing,
vol. 12, pp. 44–49, Manchester, UK, 1994.

[17] “Fidaplus.” http://www.fidaplus.net. Accessed: 2012.

[18] G. Golub and W. Kahan, “Calculating the singular
values and pseudo-inverse of a matrix,” Journal of the
Society for Industrial & Applied Mathematics, Series
B: Numerical Analysis, vol. 2, no. 2, pp. 205–224,
1965.

[19] J. B. Kruskal, “Nonmetric multidimensional scaling: a
numerical method,” Psychometrika, vol. 29, no. 2,
pp. 115–129, 1964.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 46

Am I overtraining? A novel data mining approach for
avoiding overtraining

Iztok Fister Jr.
University of Maribor
Faculty of Electrical

Engineering and Computer
Science

Smetanova 17, 2000 Maribor
Slovenia

iztok.fister1@um.si

Goran Hrovat
University of Maribor
Faculty of Electrical

Engineering and Computer
Science

Smetanova 17, 2000 Maribor
Slovenia

goran.hrovat@um.si

Samo Rauter
University of Ljubljana

Faculty of Sport
Gortanova 22, 1000 Ljubljana

Slovenia
samo.rauter@fsp.uni-lj.si

Iztok Fister
University of Maribor
Faculty of Electrical

Engineering and Computer
Science

Smetanova 17, 2000 Maribor
Slovenia

iztok.fister@um.si

ABSTRACT
Overtraining is one of the biggest problems in process of
sport training. Especially, freshmen’s and amateur athletes
who do not have enough knowledge about behavior of their
body, training and who do not have personal trainers en-
counter overtraining. So far some theoretical and practical
solutions for avoiding overtraining have been arisen. In this
paper, we propose a novel automatic solution which helps
athletes to avoid overtraining. It is based on data mining
which is applied to athlete’s workout history. First experi-
ments and simulations showed the promising results.

Keywords
data mining, apriori, sport training, overtraining

1. INTRODUCTION
Recently, an expansion of massive sport events and competi-
tions have been emerged. These events capture usually sport
disciplines, like running, cycling and triathlon [1]. Conse-
quently, more people joined to a sport and healthy lifestyle.
In fact, a lot of health and medicine organizations in the
world also encourage people to participate in such events and
live a healthy lifestyle. When people start to deal with sport,
they do not have any special goals. There, only one goal is
presented, i.e., I have to finish a specific sport race/event
in which I invested so much effort! However, when someone
finish more races, he/she want to go forward and compare

his/her achievement with other people. This stage naturally
leads to a competition. To compete in sport and fight for a
medals is not easy anymore. Firstly, athletes have a devotion
to the sport and in line with this assume themselves tremen-
dous amount of work. Secondly, they have to build/create
a good and effective training sessions. To finish race or to
win a race is a huge difference and this difference is usu-
ally reflected in training, eating and resting. When amateur
athletes start to deal with a sport, they do not have enough
knowledge about these three components of each prepara-
tion for sport competitions:

• Training: Usually, the following set questions is asked
by athletes. What is a proper training? When I have
to train? How much to train? What kind of training
should I train? Are intervals better than long distance
training? Where should I train? With whom should I
train?

• Eating: The following question are to be answered in
line with this. What I have to eat? Why I need to
eat so much carbohydrates? Do I need to increase
vegetables and fruits intake? Is it good to drink any
powders or isotonic drinks? Why do I need to avoid
eating sugar? Is it good to take additional proteins
into my food? Why eating a lot of fish is useful?

• Resting: Here, the following questions could be emerged,
e.g., Do I need to take a rest every week? When I need
rest and free days? What is a good resting? Can I still
have a simple and short run/cycle? Swimming helps
for relaxation of muscles and body?

These three components define well trained athlete. Train-
ing and resting are equally important. If you train a lot you
get overtraining. On the other hand, you cannot be trained
enough and suffer in the races. Finally, eating has a great

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 47

impact to athlete’s performance. It is important for recovery
and regeneration. Nowadays, overtraining is still one of the
biggest problems in sport. Almost every freshman encounter
this problem. When freshman encounter this problem, they
usually suffer for psychological problems in mind. Moreover,
it is very hard to overtake this problem. So far many theo-
retical, practical and abstract solutions have been developed
to deal with this problem. In this paper we propose a new
solution to help athletes to avoid overtraining. Data min-
ing methods are applied on athlete’s workouts which were
created by sport trackers. Our solution send an alarm to
athletes before overtraining. Therefore, they can change a
training or take a more rest and prevent themselves from
overtraining. The paper is structured as follows: in the
next section we describe some basics about sport training.
The third section outlines overtraining, while section 4 re-
views current overtraining prevention methods. Section 5
describes data mining methods. Section 6 is devoted to the
sport trackers. Section 7 proposes a novel solution and the
last section conclude the paper with some remarks for future
work.

2. SPORT TRAINING
Definition of Sports Training is based on scientific and ped-
agogical principles of planning the systematic activities or
processes in order to achieve the highest results in the chosen
sports discipline. The final effect of the systematic training
process can be manifested as

1. athlete’s well sport form,

2. the increased capacity of the athlete’s organism, or in
the worst case

3. overtraining syndrome.

Sport form can be described as a phenomenon of short-term
increased capacity of the athletes organism in relation to
the expected competitive capacity that is perceived on the
subjective level. In such conditions athlete feels that he/she
overcomes a certain load of sport activity with a little effort
or that he/she is able to overcome a higher load at the max-
imum effort [2]. In simple terms, it means ”to be in the best
shape at the right time.” Efficiency of the process of sports
training also means that the athlete rationalize the time de-
voted to the training [3]. All this is happening in a real
process of sports training, where in order to achieve sports
form, athletes include different methods in the process of
sport training and intensity of workload. Also the rest pe-
riod is very important. For instance, Table 1 presents an
example of proper training two weeks before half marathon
race.

2.1 Overtraining
Overtraining is a special state of an athlete occuring when
someone undergoes a bigger amount of intensity training
and consequently body is not able to recover. In such state,
athletes are not able to compete on high level because their
body is exhausted. Overtraining leads to overtraining syn-
drome. Overtraining syndrome manifests itself in physiolog-
ical and psychological symptons and has an effect on ath-
lete’s performance [4]. These physiological and psychological
indicators as proposed in [4] and presented in Table 2.

Physiological Psychological
Higher resting heart
rate

Sleep disturbances

Changes in normal
blood pressure

Loss of self-
confidence

Delayed return to
normal heart rate

Drowsiness and apa-
thy

Elevated basal
metabolic rate

Irritability

Elevated body tem-
perature

Emotional and moti-
vational imbalance

Weight
loss/excessive thirst

Excessive, prolonged
weariness

Impedded respiration Lack of appetite
Subcostal aching Fatigue
Bowel disorders Depression

Anxiety
Anger/hostility
Confusion

Table 2: Physiological and Psychological indicators
of overtraining syndrome

Causes
1 Length of the competitive season
2 Monotony of training
3 Feelings of claustrophobia
4 Lack of positive reinforcement
5 Feelings of helplessness
6 Abusiveness from authorities
7 Stringent rules
8 High levels of competitive stress

Table 3: Causes of overtraining syndrome as pro-
posed in [4]

As it can be seen from Table 2, there are many indicators
telling the athletes are overtrained. However, better than
curing overtraining is avoiding overtraining. In [4], authors
presented some causes of overtraining syndrome.

A lot of research were done on overtraining in the past, e.g.,
in [5, 6, 7, 8, 9].

2.2 Current methods of avoiding overtraining
The main herald of overtraining syndrome is a hard training
and an inadequacy of the rest. People transferred training or
competition stress differently. Athlete tolerance on training
stress varies throughout the season periods. In line with this,
a training process should be adapted and varied through the
season period. Especially, the right strategy in the compe-
tition period is very important. Too much high intensity
workout with too short rest period may results in bad re-
sults at the competition or in the worst case may leads to
overtraining. To avoid overtraining syndrome is not so easy.
Athletes are most of the time very tired. It is hard to distin-
guish when the first signs of fatigue happen. Prevention re-
quires good nutrition, complete hydration, and rest periods
between exercises themselves [7]. The effective and good or-
ganize periodization process is necessary to ensure adequate
adaption of the athlete organism to the requirements of the

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 48

DAY METHODS DURATION INTENSITY
1 Race
2 Easy jogging with some accelera-

tion
30 min Low

3 Rest day
4 Running (interval training 2 x 10

min fast; between sets 5 min - 8 min
of easy jogging)

45 min Low & High

5 Rest day
6 Running (interval training 4 x 4 min

fast; between sets 3 min - 4 min of
easy jogging)

45 min Low & High

7 Running (interval training 2 sets of
3 - 5 x 90 sec accelaration)

45 min Low & High

8 Rest day
9 Rest day
10 Endurance running 90 min Low
11 Endurance running 75 min Low
12 Rest day
13 Endurance running 105 min Low
14 Running (interval training 2 sets of

3 x 2 min very fast with 1 min re-
covery; between sets 5 min - 8 min
of easy jogging)

75 min Low & High

Table 1: Example of training for 21 km race (last 14 days before the competition)

competition in chosen sport discipline.

To avoid overtraining syndrome it can help an individual
monitoring of:

• achievements,

• mood states and

• heart rate variability.

To overcome the overtraining syndrome it can help:

• low intensity workout, rest and relaxation strategy;

• exercise with very short high intensity sprints with long
rest/low intensity period, the confidence to progress
well.

2.3 Monitoring the sport activities
Recently, training sessions of athletes are monitored with
sport trackers. Sport trackers are a combination of software
and hardware which are used for tracking activities during
sport workouts. Hardware is a smart phone, while software
are applications which run on smart phones. For a more
detailed description of sport trackers, readers are invited to
read papers [10, 11].

3. DATA MINING OF MONITORED DATA
Data obtained during the sport session of athletes can be
transferred to personal computers in a form of TCX data
sets. Normally, these data sets are analyzed using differ-
ent data mining methods. In computer science, the data

mining (DM) is a method, where the main goal is extrac-
tion of information from a data sets and conversion of these
data to a form understandable by humans. The more fre-
quently used methods in data mining are: clustering, clas-
sification, regression, association rule mining. Data mining
methods involve also some machine learning methods like
decision trees, logistic regression, support vector machines,
etc. But nowadays also some nature-inspired algorithms [12,
13] are employed in the data mining field. In data mining,
a broad spectrum of many applications has been developed,
e.g., these methods have been used for weather prediction,
fraud detection, sensor data mining, surveillance and many
more.

3.1 Association rule mining
One of the data mining tasks is association rule mining. It
was discovered by Agrawal and Srikant [14, 15] who devel-
oped Apriori. Other algorithms for association rule mining
also emerged e.g. FP-growth [16], which perform faster. As-
sociation rule mining is a task of discovering rules from set
of transactions. The well known example is basket market
analysis however association rule mining can be applied for
other datasets such as sports data. Each transaction is con-
sisted of items and is also called item-set. Discovered rules
are the form X ⇒ Y , where X is subset of items and Y
is usually only one item. As a result many rules are dis-
covered, for this reason a lot of measures are proposed to
evaluate and rank these rules. The most known interesting-
ness measures are support and confidence [14], others are
lift [17], all-confidence [18], conviction, leverage, χ2 [19] etc.
Support is proportion of transactions containing items of a
rule and confidence is defined as conf(X ⇒ Y) = supp(X ⇒
Y)/supp(X). In our case transactions is consisted of items
e.g. training distance, average heart rate, motivation, eat-

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 49

ing, sleeping, etc., and an example of rule which can be
discovered is (′MOTIV ATION ′,′EATING′)⇒
(′SLEEPING′, 1.000), where confidence and support are 1
and means that everyone who well eats and is motivated also
well sleeps.

4. PROPOSED METHOD FOR AVOIDING
THE OVERTRAINING

Our proposed method consists of the following steps:

• definition and design of framework,

• discretization,

• creating transactions,

• applying Apriori algorithm and

• interpretation of results.

In the remainder of the paper, these steps are illustrated in
detail.

4.1 Definition and design of framework
At first, a framework needs to be defined that enable an
athlete to store, maintain and use data. Let us suppose
that after every training session athlete uploads a file in
TCX format. This file is automatically parsed and data
(total duration, total distance, average heart rate, max heart
rate) are stored into the database. During uploading the file,
athlete needs to answer to the five predefined questions that
characterize current training session. These questions are:

1. Did athlete train intervals? (Possible answer values:
YES, NO)

2. Did athlete feel any special pains during the training
session? (Values: YES, NO)

3. Do athlete have a great motivation for future train-
ings? (Values: YES, NO)

4. Did athlete sleep well today? (Values: YES, NO)

5. Can atlete eat normally? (Values: YES, NO)

When athlete answers to these questions, he/she is linked
with today’s workout.

4.2 Discretization
When all data are collected a discretization process is per-
formed. In this process, numerical values have to be dis-
cretized, since Apriori algorithm works only with categorical
values. An example of discretized attributes is presented in
Table 4.

4.3 Creating transactions
After attributes are discretized, a transactions are created.
In our case, we consider one transaction for one training.
Therefore, after 2 months of training, there will be around
45 transactions. More transactions we have, more accurate
rules can be inferred and in line with this also the overtrain-
ing can be predicted more precisely.

4.4 Applying Apriori algorithm
In this step, Apriori algorithm is launched using the pre-
pared data (transactions). Apriori algorithm discovers rules
as a result. For example, a rule (′MOTIV ATION ′,
′EATING′) ⇒ (′SLEEPING′, 1.000) means that athlete
who has a motivation and can eat well, can also sleep well.

4.5 Interpretation of results
The last step in the proposed approach is an interpretation of
results. From the rules which we get with Apriori algorithm,
we want to get a real situation.

5. EXPERIMENTS AND SPORT INTERPRE-
TATION OF RULES

The first experiments of the proposed method for predict-
ing the overtraining were conducted on a real dataset. This
dataset was produced during the training sessions of a pro-
fessional mountain biker. The total number of
workouts/transactions were limited to 50. In Figure 1, some
transactions are presented that were used in our experi-
ments.

Figure 1: Example of transactions

From experiments, interesting results were obtained. For
instance, the rules are inferred from the transactions, as fol-
lows.

1. Rule: (′EATING′,) ⇒ (′MOTIV ATION ′, 1.000) In-
terpretation: From this rule we can see that proper eating
is connected with motivation. If we eat a lot we also have a
motivation.
2. Rule: (′NO MOTIV ATION ′,)⇒
(′NO SLEEPING′, 1.000) If athlete does not have a mo-
tivation, he can not sleep. It might means that he is over-
trained.
3. Rule: (′LONG RIDE′,)⇒ (′NO INTERV AL′, 1.000)
From this rule we can see what is usually in practice. If
we ride a long rides, we do not do intervals, but going the
distance only.
4. Rule: (′SLEEPING′,) ⇒ (′MOTIV ATION ′, 1.000)
Here we see can again that sleeping and motivation are con-
nected. If athlete can sleep well, then he is very motivated
and for sure not overtrained.
5. Rule: (′NO MOTIV ATION ′,)⇒
(′NO EATING′,′NO SLEEPING′, 1.000) In this rule we
see that athlete who does not have a motivation, can not eat
and sleep. In this case, he is very overtrained.
6. Rule: (′LONG RIDE′,′NO EATING′)⇒
(′NO INTERV AL′, 1.000) This rule defines long ride and
that athlete can not eat. We can also see that in this case
athlete were not doing an intervals.

From previous rules, it can be seen some rules which were
discovered from a real dataset. In some cases we can see how
to determine overtraining in rules. However, after running

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 50

Attribute Current values Discretized values How to discretize?
Distance Numerical (km) LONG RIDE

MEDIUM RIDE
SHORT RIDE

> 120 km
≤ 120 km and > 50 km
≤ 50 km

Duration Numerical (min) LONG DURATION
MEDIUM DURATION
SHORT DURATION

> 300 min
≤ 300 min and > 150 min
≤ 150 min

Average heart rate Numerical (BPM) HIGH RATE
MEDIUM RATE
LOW RATE

> 170 BPM
≤ 170 BPM and > 130 BPM
≤ 130 BPM

Intervals training? Categorical (Yes, No) INTERVAL
NO INTERVAL

Pains? Categorical (Yes, No) PAINS
NO PAINS

Motivation? Categorical (Yes, No) MOTIVATION
NO MOTIVATION

Sleeping? Categorical (Yes, No) GOOD SLEEPING
BAD SLEEPING

Eating? Categorical (Yes, No) GOOD EATING
BAD EATING

Table 4: Discretization of our attributes

LONG RIDE MEDIUM DURATION HIGH RATE PAINS MOTIVATION GOOD SLEEPING NO INTERVAL BAD EATING

Table 5: An example of one transaction

more experiments we encounter that more transactions we
have, more rules we can obtain. In line with this, we do not
obtain only rules connected with overtraining, but also some
others tackling the basic habits of athletes, like rule 1. On
the other hand, rule 5 shows a basic example of overtraining.

6. CONCLUSION
In this paper we developed a prototype solution for predict-
ing overtraining of an athlete. We used an Apriori data
mining method and applied it to the real dataset that was
created by mountain biker. Experiments showed that this
method is interesting for such manners. However there are
also some limitations like size of the dataset. In our case we
took 50 trainings into the account to get the first picture of
an athlete. In the future, we will also perform more tests
with different athletes.

7. REFERENCES
[1] Samo Rauter. Mass sports events as a way of life

(differences between the participants in a cycling and
a running event). Kinesiologica Slovenica, 2014.

[2] Kuno Hottenrott, Sebastian Ludyga, and Stephan
Schulze. Effects of high intensity training and
continuous endurance training on aerobic capacity and
body composition in recreationally active runners.
Journal of sports science & medicine, 11(3):483, 2012.

[3] Riggs J Klika, Mark S Alderdice, John J Kvale, and
Jay T Kearney. Efficacy of cycling training based on a
power field test. The Journal of Strength &
Conditioning Research, 21(1):265–269, 2007.

[4] Mary Black Johnson and Steven M Thiese. A review

of overtraining syndromeâĂŤrecognizing the signs and
symptoms. Journal of athletic training, 27(4):352,
1992.

[5] Laurel T MacKinnon. Overtraining effects on
immunity and performance in athletes. Immunology
and cell biology, 78(5):502–509, 2000.

[6] Shona L Halson and Asker E Jeukendrup. Does
overtraining exist? Sports medicine, 34(14):967–981,
2004.

[7] Lucille Lakier Smith. Overtraining, excessive exercise,
and altered immunity. Sports Medicine, 33(5):347–364,
2003.

[8] Dianna Purvis, Stephen Gonsalves, and Patricia A
Deuster. Physiological and psychological fatigue in
extreme conditions: overtraining and elite athletes.
PM&R, 2(5):442–450, 2010.

[9] Karen Birch and Keith George. Overtraining the
female athlete. Journal of Bodywork and Movement
Therapies, 3(1):24–29, 1999.

[10] Iztok Fister, Duan Fister, and Simon Fong. Data
mining in sporting activities created by sports
trackers. In Computational and Business Intelligence
(ISCBI), 2013 International Symposium on, pages
88–91. IEEE, 2013.

[11] Iztok Fister, Dušan Fister, Simon Fong, and Iztok
Fister Jr. Widespread mobile devices in applications
for real-time drafting detection in triathlons. Journal
of Emerging Technologies in Web Intelligence,
5(3):310–321, 2013.

[12] Iztok Fister Jr, Xin-She Yang, Iztok Fister, Janez
Brest, and Dušan Fister. A brief review of
nature-inspired algorithms for optimization.
Elektrotehnǐski Vestnik, 80(3):116–122, 2013.

[13] Simon Fong. Opportunities and Challenges of
Integrating Bio-Inspired Optimization and Data
Mining Algorithms. In Xin-She Yang, Zhihua Cui,
Renbin Xiao, Amir Hossein Gandomi, and Mehmet
Karamanoglu, editors, Swarm Intelligence and

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 51

Bio-Inspired Computation, pages 385–402. Elsevier,
2013.

[14] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami.
Mining association rules between sets of items in large
databases. In ACM SIGMOD Record, volume 22,
pages 207–216. ACM, 1993.

[15] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast
algorithms for mining association rules. In Proc. 20th
int. conf. very large data bases, VLDB, volume 1215,
pages 487–499, 1994.

[16] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent
patterns without candidate generation. In ACM
SIGMOD Record, volume 29, pages 1–12. ACM, 2000.

[17] Sergey Brin, Rajeev Motwani, Jeffrey D Ullman, and
Shalom Tsur. Dynamic itemset counting and
implication rules for market basket data. In ACM
SIGMOD Record, volume 26, pages 255–264. ACM,
1997.

[18] Edward R Omiecinski. Alternative interest measures
for mining associations in databases. Knowledge and
Data Engineering, IEEE Transactions on,
15(1):57–69, 2003.

[19] Craig Silverstein, Sergey Brin, and Rajeev Motwani.
Beyond market baskets: Generalizing association rules
to dependence rules. Data mining and knowledge
discovery, 2(1):39–68, 1998.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 52

An Improved Algorithm of DPM for Two-dimensional
Barcode

Tao Gao
North China Electric Power

University
Department of Automation
Baoding, Hebei Province,

071003
China

gaotao81@foxmail.com

Xiao-cheng Du
North China Electric Power

University
Department of Automation
Baoding, Hebei Province,

071003
China

Iztok Fister Jr.
University of Maribor
Faculty of Electrical

Engineering and Computer
Science

Smetanova 17, 2000 Maribor
Slovenia

iztok.fister1@um.si

ABSTRACT
Data Matrix is a two-dimensional matrix code which has
many advantages like as large information density, high ca-
pacity, and small size and so on. It is widely used in indus-
trial automation, logistics, transportation and other fields.
A two-dimensional barcode includes printing and DPM bar-
codes, which depending on the differences of the application
at backgrounds of the two-dimensional barcode. DPM is the
abbreviation for Direct Part Mark and has some weaknesses,
like low contrast, more noise jamming, complicated back-
ground, uneven illumination during the data appreciation
process. The main mission of this paper was to put forward a
series of image preprocessing methods which links binaryza-
tion and morphological transformation based on handheld
device, and achieve adaptive smoothing fuzzy and adaptive
morphological transform through the DPM detection. The
experimental results show that the method can overcome
problems such as too large middle gap, the uneven illumi-
nation and noise.

Keywords
Data Matrix Barcode, Binary Image Processing, Direct Part
Mark

1. INTRODUCTION
Two-dimensional barcode is a neotype barcode technology
based on a one-dimensional barcode, and according to cri-
teria stores data and symbolic information on special ge-
ometries using black and white, which are distributed along
the horizontal and vertical areas of two-dimensional planar
space. Due to some specialties regarding significant informa-
tion storage capacity, good robustness and low cost [1] two-
dimensional barcoding has been applied gradually within the
commercial, transportation, finance, health care and other
fields.

2. DATA MATRIX BARCODE
Presently, the more commonly used international two-dimensional
barcode includes the Data Matrix, PDF417, QR code, etc.
The Data Matrix has the minimum size of all the barcodes,
and is especially suitable for small parts logos and can be
printing on to the entity directly, so that the sign is widely
used for small objects like drugs, integrated circuits, and
manufacturing processes from production lines [2].

2.1 The structure of the data matrix 2D bar-
code

The Data Matrix of a two-dimensional barcode is shown in
Figure 1. Its symbol’s structure is composed of position
area and data areas. The position area includes an ’L’ solid
boundary and an ’L’ dotted boundary as shown in Figure
2, and has a dead zone with one data unit. Position area
is the Data Matrix of border the two-dimensional barcode,
and is mainly used for limiting the physical size, orienta-
tion and symbol distortion of DM. The ’L’ dotted boundary
is mainly used for finite unit structure of a symbol as well,
which can also help to determine physical size and distortion.
As shown in Figure 3, the data area contains the symbols
which to be encoded, and contain coded information, like
Numbers, letters and Chinese characters according to cer-
tain encoding rules. The DM code is the lattice and consists
of two kinds of color, a black and white combination, and
every black or white square with the same size is a unit of
data, representing a binary 1 and a binary 0 [5].

Figure 1: Data matrix of two-dimensional barcode

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 53

Figure 2: Position area of DM

Figure 3: Data area of DM

2.2 DPM barcode
DPM is the abbreviation of Direct Part Mark. It was orig-
inally used for machinery and electronics industrial parts,
and can record lots of information about parts like produc-
tion, quality inspection. The factory embosses the DPM
into an image by means of an etching method like the laser
etching is usage can be extended to automobile manufac-
turing, pharmaceutical, medical, military firearms manage-
ment, and so on. So the DPM barcode is a kind of important
information within the Internet of technology. The DPM
mark is the main carrier of the two-dimensional barcode
because the two-dimensional barcode has certain character-
istics like large coding capacity, high density, high informa-
tion security. Compared with the two-dimensional barcode
printed on paper, the generating method of the DPM bar
code varies, like ink-jet printing. In addition, it can also be
generated by certain other methods like laser etching, strik-
ing a hitting machine, and electrochemical corrosion. The
material of the parts with DPM barcode sculpture varies
from cast iron, aluminum, glass, hard plastic, to wood.

3. THE SOURCE CODE
Barcode recognition technology has been widely used, and
the main open source code includes ’zxing’ open source code
and ’zbar’ open source code. In this section, the improve-
ment is based on the ’zxing’ open source code. In the open
zxing source code, there are certain advantages as follows: it
can be installed within intelligent phones, and it not only has
high speed for identification but also has a short recognition
run-time. In addition, it can identify the one-dimensional
and two-dimensional barcodes at the same time, and can
also search online for products according to the recognized

barcode. So it is highly convenient for developers to use this
barcode.

3.1 The Decoding Process of The ’Zxing’ Open
Source Code

In the open ’zxing’ source code, it needs to open its build
camera first, and then photograph the barcode to be iden-
tified. The color model of the image obtained is a RGB
color model. However, the RGB color space has some dis-
advantages like: No intuitive, asymmetric, and dependency
on the hardware device [3]. So, the RGB color model should
be converted to YUV color model, for the reason that it is
important that the luminance Y is separate from the chroma
U and V in the YUV color space. The formula for the RGB
color model converting into YUV color model is as follows.

• Y=0.299R+0.587G+0.114B

• U=-0.147R-0.289G+0.436B

• V=0.615R-0.515G-0.1B

Figure 4: The basic process of zxing source code

After obtaining the YUV image, it is necessary to convert
the image into a grayscale image, and then convert it into
a binary image. In addition, the histogram needs to be ob-
tained at the same time, for then to identifing the barcode.
The description above is the whole barcode image processing
of the open source code identification of ’zxing’. The basic
process of ’zxing’ source code is shown in Figure 4.

3.2 Program flowchart
The method put forward in this paper is based on ”Z-Xing”
project which is an open source two-dimensional code recog-
nition project of Google, its main purpose is to do some pre-
treatment to the initial two-dimensional code image. It is
achieved the image binarization by referring to the binariza-
tion of Yang Shu, and attaching some appropriate process
to dotted data matrix bar code processing. The size of the
point module will be get by the process of blob detection.
Combined with morphological processing the image can be
identified, the program flow chart shown in Figure 6. Among
them, it is necessary to focus on these folders mainly with
the names ”android”, ”camera”, ”encode”, and ”result”. The
process of the initialization program is as follows: firstly, to
load the main activity and create the object of the Capture
Activity Handler in this class, and then is object starts the
camera to realize the automatic focusing. Secondly, to cre-
ate Decode handler threads, and then create the object of a

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 54

Decode handler, and this object then obtains original byte
data from the camera, all the above during the first stage.
After obtaining the data, it parses out the two-dimensional
barcode, and then parses out the character of the barcode,
at the same time removing the characters without analysis
to be handle by ’Capture Activity Handlers’. This class is
called the ’decode function’ of the main activity used for
completing the analyse of the characters, and the image is
finally displayed on the screen. In this way, it completes the
parsing of the barcode.

Figure 5: The basic process of zxing source code

4. BINARY PROCESSING OF DATA MATRIX
CODES

4.1 The binary image processing
The key to binarization is to define the boundary between
black and white. The image has been transformed into gray
image, with every point represented by a gray value, which
is needed for defining a gray value (namely threshold). If
the value of the point is greater than that value, it can be
defined as white (1), otherwise, it is defined as black (0).

4.2 The improvement of a binarization algo-
rithm

As shown in Figure 6, in ’zxing’ barcode, the binarization
processing is implemented in Binarizer class, where the one-
dimensional code uses the get-BlackRow method, and the
two-dimensional code uses getBlackMatrix method. There
are two classes generated from Binarizer class: Global-
Histogram-Binarizer and Hybrid-Binarizer. The im-
plementations of the getBlackMatrix method for these two
classes are different, so we modify the binarization process

briefly for the Global-Histogram-Binarizer class. In the
improved Global-Histogram-Binarizer class, the thresh-
old is calculated by the kittler algorithm. Using the kit-
tler binarization algorithm, we deal with the gray images
of the DataMatrix barcodes during binarization processing,
and then the global threshold (T) can be obtained. The kit-
tler binarization processing formula is: For pages other than
the first page, start at the top of the page, and continue in
double-column format. The two columns on the last page
should be as close to equal length as possible.

T =
∑
x

∑
y

e(x, y)f(x, y)/
∑
x

∑
y

e(x, y) (1)

In Equation (1), f(x, y) is the original gray image, e(x, y) =
max{|ex|, |ey|} represents the maximum gradient. In e(x, y), ex =
f(x − 1, y) − f(x + 1, y) represents the horizontal gradient,
ey = (x, y − 1) − f(x, y + 1) represents the vertical gradi-
ent [4]. The relevant procedure is shown in Figure 7.

Figure 6: The improved binarization process

Figure 7: Kittler algorithm

5. EXPERIMENTS
The process of test uses the Huawei smartphone as a carrier.
The main parameters of the phone are as follows: the CPU is
mediatek MT6592M, the frequency is 1433 MHZ, memory is
2 GB. We deal with Data Matrix barcode on different spec-
ifications, color, clarity, and 34 DPM pictures are tested. In
this section, we identified the Data Matrix barcode by soft
wares created from the ’Z-xing’ package which have been im-
proved and haven’t been improved respectively, and compare
the recognized effects with each other. The results are shown

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 55

Software Original Improved
Number of images 34 34
Number of successful images 19 25
Success rate 55.9% 73.5%
Number of images with the brightness difference 17 17
Number of successful images 7 11
Success rates 41.2% 64.7%
Number of DM barcode images (2*2) 5 5
Number of successful images 2 4
Success rates 40% 80%
Number of images sampled from artifacts directly 12 12
Number of successful images 7 9
Success rate 58.3% 75%

Table 1: Comparison

in Table 1. Because the method will be used in handheld de-
vice finally, so the method need have more instantaneity. So
in the experiment, shoot the image from different angles for
100 times, then count average correct recognition rate and
speed. Through analyzing the experimental result, it can
be known that the elapsed time is relevant to the contrast,
roughness and illumination of image. The method sacrifices
efficiency for accuracy because of using improved Bernsen
method. The elapsed time is acceptable through compar-
ing the time with the elapsed time of standard DataMatrix.
Counting the time that each part spends through simula-
tion, it can be reached that the improved Bernsen method
takes more time when the spot detection takes second place.
The size of image does not much affect the result because
the program adds size unitizing method.

6. DISCUSSION AND CONCLUSION
It can be seen from Table 1, that after improving ’zxing’
binarization, the success rates of various types of Data Ma-
trix barcode recognition were improved, especially in the
test with the brightness difference, and the effect was very
obvious, which embodies the characteristics of the kittler al-
gorithm. It can also more effectively find the area of uneven
illumination. The improved algorithm is more stable and
adaptive, so as to improve the success rate of recognition.
In addition, the improved ’zxing’ still has some problems:

• It can be seen from Table 1, that the differences be-
tween the success rates are higher, and the difference
is around 20 percents, some even higher, and this is
due to the pictures being a slightly less. Table 1 can
reflect the effect of improvement, but it is not as great
as the numbers reflected in the Table.

• In the identification process of 2 X 2 DM code or 1 X n
DM code, the recognition rate had improved after the
improvement, but certain process of image recognition
took a long time, so this kind of barcode recognition
effect of the improved ’zxing’ is still unsatisfactory.

• When we recognized the pictures that sampled from
the artifacts directly, we needed to extract the tested
sections manually, otherwise, the recognition effect was
bad, in other word, and it was easily affected by the
background.

7. ACKNOWLEDGEMENTS
This work is supported by National Natural Science Foun-
dation of China (No. 71102174 and No. 51306058), the
Fundamental Research Funds for the Central Universities
(No. 2014QN46).

8. REFERENCES
[1] C.-H. Cheung and L.-M. Po. Novel

cross-diamond-hexagonal search algorithms for fast
block motion estimation. Multimedia, IEEE
Transactions on, 7(1):16–22, 2005.

[2] T. Jinzhao and Q. Jie. Fast and precise detection of
straight line with hough transform. Journal of Image
and Graphics, 13(2):234–237, 2008.

[3] Q. Q. Ruan and Y. Z. Ruan. Digital image processing
(second edition). Electronic Industry Press, Beijing,
2005.

[4] S. Yang and Z.-h. Shang. A new binarization algorithm
for 2d bar code image. Journal of Kunming University
of Science and Technology (Science and Technology),
1:011, 2008.

[5] Y.-x. Zou and G.-b. Yang. Research on image
pre-processing for data matrix 2d barcode decoder.
Computer Engineering and Applications, 34, 2009.

StuCoSReC Proceedings of the 2014 1st Student Computer Science Research Conference
Ljubljana, Slovenia, 7 October 56

StuCoSReC

University of Primorska Press
www.hippocampus.si
isbn 978-961-6963-03-9
Not for resale

9 789616 963039

	Fister jr., Iztok, and Andrej Brodnik (eds.). StuCoSReC. Proceedings of the 1st Student Computer Science Research Conference. Koper: University of Primorska Press, 2014 (Front Cover).
	Colophone
	Preface
	Contents
	David Jesenko, Domen Mongus, Borut Žalik ■ Spatially Embedded Complex Network Estimation Using Fractal Dimension
	László Hajdu, Miklós Krész, Attila Tóth ■ Graph Coloring Based Heuristic for Driver Rostering
	Viktor Árgilán, Balázs Dávid ■ A New Heuristic Approach for the Vehicle and Driver Scheduling Problems
	Jani Dugonik, Iztok Fister ■ Multi-population Firefly Algorithm
	Andrej Bukošek ■ Monte Carlo Path Tracing with OpenCL
	Pavel Fičur ■ A Garlic Clove Direction Detection Based on Pixel
	Gregor Vohl, Janez Brest ■ Simple Approach to Finding Repeated Patterns in Opponents Texas Hold’em No-limit Game
	Uroš Mlakar ■ Histogram of Oriented Gradients Parameter Optimization for Facial Expression Recognition
	Goran Hrovat, Milan Ojsteršek ■ Constructing Domain-specific Semantic Dictionaries to Supplement Domain-specific Knowledge Bases
	Iztok Fister jr., Goran Hrovat, Samo Rauter, Iztok Fister ■ Am I overtraining? A Novel Data Mining Approach for Avoiding Overtraining
	Tao Gao, Xiao-cheng Du, Iztok Fister jr. ■ An Improved Algorithm of DPM for Two-dimensional Barcode

